Discrete Optimization ISyE 6662 - Spring 2023 Homework 5

Instructor: Alejandro Toriello TA: Filipe Cabral

April 10, 2023.

1. Let $N = \{1, ..., n\}$, and let $f : 2^N \to \mathbb{R}$ be a set function with $f(\emptyset) = 0$; define

$$P(f) = \left\{ x \in \mathbb{R}^N : \sum_{i \in S} x_i \le f(S), \ S \subseteq N \right\}.$$

We showed in class that if f is submodular, the greedy solution is optimal for $\max_{x \in P(f)} \sum_{i \in N} w_i x_i$ with any objective vector $w \in \mathbb{R}_+$. Prove the converse: if the greedy solution is optimal for any objective vector, then f is submodular. Hint: It suffices to consider objectives of the form $w \in \{0, 1\}^N$.

Answer: It is enough to show that for every k the following inequality holds:

$$f(S_{k+1}) - f(S_k) \ge f(S_{k+2}) - f(S_k \cup \{k+2\}),$$

where $S_j := \{1, 2, ..., j\}$, since we can always relabel the set N and describe the submodularity property in this form.

(Primal greedy solution): Indeed, let $w_1 = \cdots = w_n = 1$. Then, the greedy optimal solution is

$$\begin{aligned} x_1^* &= f(S_1), \\ x_2^* &= f(S_2) - x_1^* \\ &\vdots \\ x_j^* &= f(S_j) - \sum_{k=1}^{j-1} x_k^* = f(S_j) - f(S_{j-1}), \\ &\vdots \\ x_n^* &= f(S_n) - \sum_{k=1}^{n-1} x_k^* = f(S_n) - f(S_{n-1}). \end{aligned}$$

It follows from the feasibility of the primal greedy solution that

$$f(S_k \cup \{k+2\}) \ge \sum_{j \in S_k \cup \{k+2\}} x_j^* = \sum_{j=1}^k x_j^* + x_{k+2}^* = f(S_k) + f(S_{k+2}) - f(S_{k+1}).$$

Hence, the function f is submodular.

(Dual greedy solution): Indeed, let $w_1 = \cdots = w_k = 1$, $w_{k+1} = 0$, $w_{k+2} = 1$, and $w_{k+3} = \cdots = w_n = 0$. According to the dual greedy solution, the dual optimal is

$$y_S^* = \begin{cases} w_i - w_{i+1}, & \text{if } S = S_i, \text{ and } i \in N, \\ 0, & \text{otherwise,} \end{cases}$$

for all $S \in 2^N$. This implies that the dual optimal value is $\sum_{i=1}^n f(S_i)(w_i - w_{i+1})$ for the optimization problem

$$\min_{y} \quad \sum_{S \subseteq N} f(S) \cdot y_{S} \\ \text{s.t.} \quad \sum_{S \subseteq N: i \in S} y_{S} \ge w_{i}, \quad \forall i \in N.$$

Below are some remarks about the optimal solution:

• The optimal value can be described as

$$\sum_{i=1}^{n} f(S_i)(w_i - w_{i+1}) = f(S_k) - f(S_{k+1}) + f(S_{k+2}).$$
(1)

• The solution defined as

$$y_S = \begin{cases} 1, & \text{if } S = S_k \cup \{k+2\}, \\ 0, & \text{otherwise,} \end{cases}$$

for all $S \in 2^N$, is feasible and has objective value $f(S_k \cup \{k+2\})$. In particular, we have that

$$f(S_k) - f(S_{k+1}) + f(S_{k+2}) \le f(S_k \cup \{k+2\}).$$

Hence, f is submodular.

2. Recall the integral polyhedron $P = \{x \in [0,1]^n : \sum_{i=1}^n x_i \leq \mathcal{U}\}$, for some $\mathcal{U} \in \mathbb{N}$. Is P a submodular polyhedron? In other words, does there exist a submodular function f with P = P(f) or $P = P_+(f)$? Justify your answer.

Answer: Consider the function $f(S) := \min(|S|, \mathcal{U})$. We show that $P = P_+(f)$.

Let
$$x \in P_+(f)$$
. Then,

- Let S = N and note that $\sum_{i=1}^{n} x_i = \sum_{i \in N} x_i \leq f(N) \leq \mathcal{U}$.
- Let $S = \{j\}$. Then, $x_j = \sum_{i \in \{j\}} x_i \le f(\{j\}) \le 1$, for every $j \in N$.

This implies that $x \in P$. Conversely, let $x \in P$ and let $S \subseteq N$. There there are two options:

- If $|S| \leq \mathcal{U}$ then $\sum_{i \in S} x_i \leq \sum_{i \in S} 1 = |S| = f(S)$.
- If $|S| > \mathcal{U}$ then we have that $\sum_{i \in S} x_i \leq \sum_{i=1}^n x_i \leq |\mathcal{U}| = f(S)$.
- This implies that $x \in P_+(f)$.

We just have to prove that f is a submodular function. Indeed, for any subset $S \subseteq N$ and index $i \in N \setminus S$ we have that

$$f(S \cup \{i\}) - f(S) = \begin{cases} 1, & \text{if } |S| < \mathcal{U}, \\ 0, & \text{otherwise.} \end{cases}$$

In particular, the following inequality holds

$$f(S \cup \{i\}) - f(S) \ge f(S \cup \{i, j\}) - f(S \cup \{j\}),$$

for every subset $S \subseteq N$ and indexes $i, j \in N \setminus S$. Hence, f is submodular.

3. Let (N, E) be a connected, undirected network. Consider the integer programming formulation

$$Q_{I} = \left\{ x \in \mathbb{Z}_{+}^{E}, y \in \mathbb{Z}_{+}^{2(n-2)|E|} \middle| \begin{array}{c} x_{ij} = y_{ij}^{k} + y_{ji}^{k}, & \{i,j\} \in E, \ k \neq i,j, \\ x_{ij} \mathbb{1}_{\{i,j\} \in E} + \sum_{k \in \delta(i) \setminus j} y_{ik}^{j} = 1, \quad i \in N, \ j \in N \setminus i \end{array} \right\}$$

Here, 1 is the indicator function, equal to one when a statement is true and zero otherwise. Note that the y variables are ordered triples and the last set of constraints ranges over ordered pairs.

a) Prove that $\operatorname{proj}_x(Q_I)$ is the set of indicator vectors of spanning trees of (N, E). Hint: Interpret y_{ij}^k as indicating that k is on j's side of the spanning tree.

Answer: Recall that the spanning tree formulation is given by:

$$P_I = \left\{ x \in \mathbb{Z}_+^E : \sum_{e \in E[S]} x_e \le |S| - 1, \ \emptyset \ne S \subsetneq N; \quad \sum_{e \in E} x_e = n - 1 \right\}.$$

We start by proving that $P_I \subseteq \operatorname{proj}_x(Q_I)$. Let $x \in P_I$ and define $y \in \mathbb{Z}^{2(n-2)|E|}_+$ such that

$$y_{ij}^{k} = \begin{cases} 1, & \text{if } x_{ij} = 1 \text{ and } k \text{ lies in the same connected component as } j \\ & \text{when we remove the edge } \{i, j\} \text{ from the spanning tree,} \\ 0, & \text{otherwise.} \end{cases}$$

The constraint $x_{ij} = y_{ij}^k + y_{ji}^k$ is satisfied for any $\{i, j\} \in E$ and $k \neq i, j$ because if x_{ij} is equal to 1 then k lies either in the same connected component as j or i but not both at the same time, otherwise the subgraph represented by x would have a cycle. If x_{ij} is 0 then y_{ij}^k and y_{ji}^k are 0 by definition.

The second group of constraints $x_{ij} + \sum_{k \in \delta(i) \setminus j} y_{ik}^j = 1$ is also satisfied for all $i \in N$, and $j \in N \setminus i$. Indeed, if x_{ij} is equal to 1 then y_{ik}^j must equal 0 for all $k \in \delta(i) \setminus \{j\}$, otherwise if some y_{ik}^j equal 1 then x_{ik} is also 1 and j lies in the same connected component as k. This implies that there are two different paths from i to j, i.e., the subgraph represented by x has a cycle. If x_{ij} is 0 then the unique path that connects i and j have length greater than 1, which means that there exists $r \in \delta(i) \setminus \{j\}$ such that x_{ir} is 1 and there is a unique path from r to j. In particular, the variable y_{ir}^j is equal to 1 and all the variables y_{ik}^j for $k \in \delta(i) \setminus \{j, r\}$ are 0. Indeed, if y_{ik}^j is 1 for some $k \in \delta(i) \setminus \{j, r\}$ then the variable x_{ik} equals 1 and j lies in the same connected component as k, which implies that there are two different paths from i to j. Hence (x, y) belongs to Q_I .

Lets prove that $\operatorname{proj}_x(Q_I) \subseteq P_I$. Indeed, consider $(x, y) \in Q_I$. Given $\{i, j\} \in E$, if we sum up the first group of constraints $x_{ij} = y_{ij}^k + y_{ji}^k$ over all $k \neq i, j$ we get

$$(n-2) \cdot x_{ij} = \sum_{k \in N \setminus \{i,j\}} y_{ij}^k + y_{ji}^k,$$

and if we sum it over all $\{i, j\} \in E$ we obtain

$$(n-2) \cdot \sum_{\{i,j\} \in E} x_{ij} = \sum_{\{i,j\} \in E} \sum_{k \in N \setminus \{i,j\}} (y_{ij}^k + y_{ji}^k) = \sum_{i \in N} \sum_{j \in \delta(i)} \sum_{k \in N \setminus \{i,j\}} y_{ij}^k.$$
 (2)

Now, we sum up the second group of constraints $x_{ij}\mathbb{1}_{\{i,j\}\in E} + \sum_{k\in\delta(i)\setminus j} y_{ik}^j = 1$ over all $i \in N$, and $j \in N \setminus i$:

$$n(n-1) = \sum_{i \in N} \sum_{j \in N \setminus \{i\}} x_{ij} \mathbb{1}_{\{i,j\} \in E} + \sum_{i \in N} \sum_{j \in N \setminus \{i\}} \sum_{k \in \delta(i) \setminus j} y_{ik}^{j}$$
$$= 2 \cdot \sum_{\{i,j\} \in E} x_{ij} + \sum_{i \in N} \sum_{k \in N \setminus \{i\}} \sum_{j \in \delta(i) \setminus k} y_{ij}^{k}$$
$$= 2 \cdot \sum_{\{i,j\} \in E} x_{ij} + \sum_{i \in N} \sum_{j \in \delta(i)} \sum_{k \in N \setminus \{i,j\}} y_{ij}^{k},$$
(3)

where the second equality follows from the fact that x_{ij} equals x_{ji} if $\{i, j\} \in E$, and we replace k by j in the triple sum expression. By subtracting Equation (3) from Equation (2), we conclude that $n \cdot \sum_{\{i,j\} \in E} x_{ij} = n(n-1)$, which implies the constraint $\sum_{\{i,j\} \in E} x_{ij} = n-1$.

We now prove the constraint $\sum_{e \in E[S]} x_e \leq |S| - 1$ is satisfied for every nonempty set $S \subsetneq N$. The idea is the same, except that we sum over all elements of S instead of all elements of N. Given $\{i, j\} \in E[S]$, if we sum over $k \in S \setminus \{i, j\}$ in the first constraint group we get

$$(|S|-2)x_{ij} = \sum_{k \in S \setminus \{i,j\}} y_{ij}^k + y_{ji}^k,$$

and if we sum it over all $\{i, j\} \in E[S]$ we obtain

$$(|S|-2) \cdot \sum_{\{i,j\}\in E[S]} x_{ij} = \sum_{\{i,j\}\in E[S]} \sum_{k\in S\setminus\{i,j\}} (y_{ij}^k + y_{ji}^k) = \sum_{i\in S} \sum_{j\in\delta(i)\cap S} \sum_{k\in S\setminus\{i,j\}} y_{ij}^k.$$

For the second constraint group, $x_{ij}\mathbb{1}_{\{i,j\}\in E} + \sum_{k\in\delta(i)\setminus j} y_{ik}^j = 1$, we sum over all $i \in S$ and $j \in S \setminus \{i\}$:

$$\begin{split} |S|(|S|-1) &= \sum_{i \in S} \sum_{j \in S \setminus \{i\}} x_{ij} \mathbbm{1}_{\{i,j\} \in E} + \sum_{i \in S} \sum_{j \in S \setminus \{i\}} \sum_{k \in \delta(i) \setminus j} y_{ij}^{j} \\ &= 2 \cdot \sum_{\{i,j\} \in E[S]} x_{ij} + \sum_{i \in S} \sum_{k \in S \setminus \{i\}} \sum_{j \in \delta(i) \setminus k} y_{ij}^{k} \\ &= 2 \cdot \sum_{\{i,j\} \in E[S]} x_{ij} + \sum_{i \in S} \sum_{j \in \delta(i) \cap S} \sum_{k \in S \setminus \{i,j\}} y_{ij}^{k} \\ &\geq 2 \cdot \sum_{\{i,j\} \in E[S]} x_{ij} + \sum_{i \in S} \sum_{j \in \delta(i) \cap S} \sum_{k \in S \setminus \{i,j\}} y_{ij}^{k}, \end{split}$$

where the last inequality comes from the fact that the summation over $j \in \delta(i)$ is greater than or equal to the summation over $j \in \delta(i) \cap S$. Therefore, we have that $|S| \cdot \sum_{\{i,j\} \in E[S]} x_{ij} \leq |S|(|S|-1)$, which implies the constraint $\sum_{\{i,j\} \in E[S]} x_{ij} \leq |S| - 1$.

b) Let Q be the linear relaxation of Q_I where we remove integrality constraints. Prove that $\operatorname{proj}_x(Q)$ is the convex hull of indicator vectors of spanning trees.

Answer: In the proof above for the inclusion $\operatorname{proj}_x(Q_I) \subseteq P_I$ we did not use any specific property of the integers. Indeed, the same argument proves that $\operatorname{proj}_x(Q) \subseteq P$ if we replace the set of integers by real numbers. In summary, we have the following properties:

- i. $\operatorname{proj}_x(Q) \subseteq P$.
- ii. $P = \operatorname{conv}(P_I)$.
- iii. $\operatorname{proj}_x(Q_I) = P_I$.

Since the convex hull and the projection operators commute, we have the following identities:

 $P = \operatorname{conv}(P_I) = \operatorname{conv}(\operatorname{proj}_r(Q_I)) = \operatorname{proj}_r(\operatorname{conv}(Q_I)) \subseteq \operatorname{proj}_r(Q).$

Hence, $P = \operatorname{proj}_x(Q)$.

- 4. Let $N = \{1, \ldots, n\}$. A collection of subsets $\mathcal{L} \subseteq 2^N$ is laminar if $S_1, S_2 \in \mathcal{L}$ implies either $S_1 \cap S_2 = \emptyset$, $S_1 \subseteq S_2$ or $S_1 \supseteq S_2$. So at least one of $S_1 \cap S_2$, $S_1 \setminus S_2$ and $S_2 \setminus S_1$ is empty. It may be helpful to think of a laminar family as a rooted tree, where N is the root, the individual elements are leaves, and other sets are intermediate nodes with adjacency determined by containment.
 - a) For N and laminar family \mathcal{L} , let $A \in \{0, 1\}^{\mathcal{L} \times N}$ be the incidence matrix of \mathcal{L} : $a_{S,i} = 1$ when $i \in S$ and $a_{S,i} = 0$ otherwise. Prove that A is TU.

Answer: Removing a row of A is equivalent to remove a subset of the laminar family and removing a column of A is equivalent to remove an element $i \in N$ from all subsets $S \in \mathcal{L}$. Thus, any square submatrix $B \in \{0, 1\}^{k \times k}$ of A is the incidence matrix of a laminar family $\mathcal{L}' \subseteq 2^{N'}$.

Since elementary row operations do not change the determinant of a matrix we can subtract the rows associated to subsets S_1 and S_2 such that $S_1 \subseteq S_2$ and redefine the subset S_2 , i.e., $S_2 := S_2 \setminus S_1$. The resulting matrix \tilde{B} is the incidence matrix of a laminar family where all the subsets are disjoints. Thus, each column of \tilde{B} has at most one +1, which implies that

$$\det B = \det B \in \{0, \pm 1\}.$$

b) Let \mathcal{L}_1 and \mathcal{L}_2 be two laminar families, and let $\mathcal{L} = \mathcal{L}_1 \cup \mathcal{L}_2$. Prove that the incidence matrix A of \mathcal{L} is TU.

Answer: Let *B* be a square submatrix of *A*. Let $S_1, S_2 \in \mathcal{L}_1$ be two rows of *B* such that $S_1 \subseteq S_2$. Subtract S_1 from S_2 and redefine the subset S_2 , i.e., $S_2 := S_2 \setminus S_1$. Analogously for the subsets of the other laminar family \mathcal{L}_2 , that is, $S'_1, S'_2 \in \mathcal{L}_2$ such that $S'_1 \subseteq S'_2$. Thus, each column of \widetilde{B} has at most two 1's. Given a column with two 1's, the associated rows are subsets *S* and *S'* that belong to different laminar families, that is, $S \in \mathcal{L}_1$ and $S' \in \mathcal{L}_2$.

We expand the determinant for the columns with exactly one 1, which results in a submatrix \overline{B} . There are two possibilities for \overline{B} :

- (i) There exists a column of 0's in \overline{B} . This implies that det $\overline{B} = 0$.
- (ii) All the columns of \overline{B} have exactly two 1's. Thus, the matrix \overline{B} is the node-edge incidence matrix of a bipartite graph, where the nodes are the rows of \overline{B} and $\mathcal{L}_1 \cup \mathcal{L}_2$ is the node partition. Hence, \overline{B} is TU.

Therefore,

$$\det B = \det B = \det B' \in \{0, \pm 1\}$$

Now consider a submodular function $f: 2^N \to \mathbb{R}$ with $f(\emptyset) = 0$, and recall the submodular polyhedron P(f).

c) Let $A, B \subseteq N$ be two sets with $A \setminus B, B \setminus A, A \cap B \neq \emptyset$. Show that if the constraints for A and B are binding, then so are the constraints for $A \cap B$ and $A \cup B$. Show that these four binding constraints define a constraint matrix of rank three.

Answer: Indeed, we have the following relations

$$f(A) + f(B) \ge f(A \cap B) + f(A \cup B)$$

$$\ge \sum_{i \in A \cap B} x_i + \sum_{j \in A \cup B} x_j$$

$$= \sum_{i \in A} x_i + \sum_{j \in B} x_j = f(A) + f(B),$$

where the first inequality follows from the submodularity of f, the second inequality is a consequence of the feasibility of x, the third relation is an equality obtained by rearranging the summation, and the last equality follows from the hypothesis. Therefore, we get that $f(A) + f(B) = f(A \cap B) + f(A \cup B)$.

This implies that the constraints associated to $A \cap B$ and $A \cup B$ are also binding, otherwise if $f(A \cap B) > \sum_{i \in A \cap B} x_i$ or $f(A \cup B) > \sum_{i \in A \cup B} x_i$ we would get that $f(A \cap B) + f(A \cup B) > f(A) + f(B)$, which is a contradiction.

Consider the matrix induced by the constraints associated to A, B, $A \cap B$, and $A \cup B$:

$$M_{ij} = \begin{cases} 1, & \text{if } i = 1 \text{ and } j \in A \cap B, \\ 1, & \text{if } i = 2 \text{ and } j \in A, \\ 1, & \text{if } i = 3 \text{ and } j \in B, \\ 1, & \text{if } i = 4 \text{ and } j \in A \cup B, \\ 0, & \text{o.w..} \end{cases}$$

Since elementary row operations do not change the rank of a matrix, we can subtract the first row of M from the second and third rows. Thus, we get the matrix

$$M'_{ij} = \begin{cases} 1, & \text{if } i = 1 \text{ and } j \in A \cap B, \\ 1, & \text{if } i = 2 \text{ and } j \in A \backslash B, \\ 1, & \text{if } i = 3 \text{ and } j \in B \backslash A, \\ 1, & \text{if } i = 4 \text{ and } j \in A \cup B, \\ 0, & \text{o.w..} \end{cases}$$

If we subtract the first, second, and third rows of M' from its forth row, we get a zero row vector:

$$\widetilde{M}_{ij} = \begin{cases} 1, & \text{if } i = 1 \text{ and } j \in A \cap B, \\ 1, & \text{if } i = 2 \text{ and } j \in A \backslash B, \\ 1, & \text{if } i = 3 \text{ and } j \in B \backslash A, \\ 0, & \text{if } i = 4, \\ 0, & \text{o.w..} \end{cases}$$

Hence, $\operatorname{rank}(M) = \operatorname{rank}(\widetilde{M}) \leq 3$. The rank of \widetilde{M} is indeed 3 because if we take one element of $A \cap B$, $A \setminus B$, and $B \setminus A$ the submatrix obtained is equivalent to the identity matrix:

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

d) For any face $F \subseteq P(f)$, show that you can choose the linearly independent binding constraints defining F so they form a laminar family.

Answer: Let F be a face of P(f). There exist $S_1, \ldots, S_r \subseteq N$ such that the face F is represented as

$$F = \left\{ x \in P(f) : \sum_{i \in S_k} x_i = f(S_k), \ k = 1, \dots, r \right\}.$$

From item (c), all possible pairwise intersections and unions generated from S_1, \ldots, S_r are implicit equalities for F. We can apply elementary rows operations (Gaussian elimination) to create a set partition of $S_1 \cup \cdots \cup S_k$ whose corresponding equality constraints represent F. In other words, $F = \{x \in P(f) : \sum_{i \in B} x_i = f(B), B \in \mathcal{L}\}$ where \mathcal{L} is

$$\mathcal{L} = \left\{ B \in 2^N : B = \left(\bigcap_{k \in \mathcal{A}} S_k \right) \bigcap \left(\bigcap_{k \in \mathcal{A}^{\complement}} S_k^{\complement} \right), \ \mathcal{A} \subseteq \{1, \dots, r\}, \ |A| \ge 1 \right\}.$$

Moreover, \mathcal{L} is a laminar family because \mathcal{L} is a set partition of $S_1 \cup \cdots \cup S_k$.

e) Conclude that for two integer-valued submodular functions $f, g: 2^N \to \mathbb{Z}$, the polyhedron $P(f) \cap P(g)$ is integral.

Answer: We prove that any face F of $P(f) \cap P(g)$ is integral. From item (d), if F is a face of $P(f) \cap P(g)$ then there are laminar families $\mathcal{L}_1, \mathcal{L}_2$ such that

$$F = \left\{ x \in P(f) \cap P(g) : \sum_{i \in B_1} x_i = f(B_1), B_1 \in \mathcal{L}_1, \\ \sum_{i \in B_2} x_i = g(B_2), B_2 \in \mathcal{L}_2. \right\}.$$

If f(B) differs from g(B) for some $B \in \mathcal{L}_1 \cap \mathcal{L}_2$ then F is empty. Otherwise, the function given by

$$h(B) = \begin{cases} f(B), & \text{if } B \in \mathcal{L}_1, \\ g(B), & \text{if } B \in \mathcal{L}_2 \end{cases}$$

is well-defined. Note that we can describe the face ${\cal F}$ as

$$F = \left\{ x \in P(f) \cap P(g) : \sum_{i \in B} x_i = h(B), \ B \in \mathcal{L}_1 \cup \mathcal{L}_2 \right\}.$$

Since the constraint matrix of $\sum_{i \in B} x_i = h(B)$ for all $B \in \mathcal{L}_1 \cup \mathcal{L}_2$ is the indicator matrix of the union of two laminar families, we have from item (b) that it is totally unimodular (TU). Hence, F is integral.