# Discrete Optimization <br> ISyE 6662 - Spring 2023 <br> Homework 5 

Instructor: Alejandro Toriello<br>TA: Filipe Cabral

April 10, 2023.

1. Let $N=\{1, \ldots, n\}$, and let $f: 2^{N} \rightarrow \mathbb{R}$ be a set function with $f(\emptyset)=0$; define

$$
P(f)=\left\{x \in \mathbb{R}^{N}: \sum_{i \in S} x_{i} \leq f(S), S \subseteq N\right\}
$$

We showed in class that if $f$ is submodular, the greedy solution is optimal for $\max _{x \in P(f)} \sum_{i \in N} w_{i} x_{i}$ with any objective vector $w \in \mathbb{R}_{+}$. Prove the converse: if the greedy solution is optimal for any objective vector, then $f$ is submodular. Hint: It suffices to consider objectives of the form $w \in\{0,1\}^{N}$.

Answer: It is enough to show that for every $k$ the following inequality holds:

$$
f\left(S_{k+1}\right)-f\left(S_{k}\right) \geq f\left(S_{k+2}\right)-f\left(S_{k} \cup\{k+2\}\right)
$$

where $S_{j}:=\{1,2, \ldots, j\}$, since we can always relabel the set $N$ and describe the submodularity property in this form.
(Primal greedy solution): Indeed, let $w_{1}=\cdots=w_{n}=1$. Then, the greedy optimal solution is

$$
\begin{aligned}
x_{1}^{*}= & f\left(S_{1}\right), \\
x_{2}^{*}= & f\left(S_{2}\right)-x_{1}^{*}=f\left(S_{2}\right)-f\left(S_{1}\right), \\
& \vdots \\
x_{j}^{*}= & f\left(S_{j}\right)-\sum_{k=1}^{j-1} x_{k}^{*}=f\left(S_{j}\right)-f\left(S_{j-1}\right), \\
& \vdots \\
x_{n}^{*}= & f\left(S_{n}\right)-\sum_{k=1}^{n-1} x_{k}^{*}=f\left(S_{n}\right)-f\left(S_{n-1}\right) .
\end{aligned}
$$

It follows from the feasibility of the primal greedy solution that

$$
f\left(S_{k} \cup\{k+2\}\right) \geq \sum_{j \in S_{k} \cup\{k+2\}} x_{j}^{*}=\sum_{j=1}^{k} x_{j}^{*}+x_{k+2}^{*}=f\left(S_{k}\right)+f\left(S_{k+2}\right)-f\left(S_{k+1}\right) .
$$

Hence, the function $f$ is submodular.
(Dual greedy solution): Indeed, let $w_{1}=\cdots=w_{k}=1$, $w_{k+1}=0$, $w_{k+2}=1$, and $w_{k+3}=\cdots=w_{n}=0$. According to the dual greedy solution, the dual optimal is

$$
y_{S}^{*}= \begin{cases}w_{i}-w_{i+1}, & \text { if } S=S_{i}, \text { and } i \in N \\ 0, & \text { otherwise }\end{cases}
$$

for all $S \in 2^{N}$. This implies that the dual optimal value is $\sum_{i=1}^{n} f\left(S_{i}\right)\left(w_{i}-w_{i+1}\right)$ for the optimization problem

$$
\begin{aligned}
\min _{y} & \sum_{S \subseteq N} f(S) \cdot y_{S} \\
\text { s.t. } & \sum_{S \subseteq N: i \in S} y_{S} \geq w_{i}, \quad \forall i \in N .
\end{aligned}
$$

Below are some remarks about the optimal solution:

- The optimal value can be described as

$$
\begin{equation*}
\sum_{i=1}^{n} f\left(S_{i}\right)\left(w_{i}-w_{i+1}\right)=f\left(S_{k}\right)-f\left(S_{k+1}\right)+f\left(S_{k+2}\right) \tag{1}
\end{equation*}
$$

- The solution defined as

$$
y_{S}= \begin{cases}1, & \text { if } S=S_{k} \cup\{k+2\} \\ 0, & \text { otherwise }\end{cases}
$$

for all $S \in 2^{N}$, is feasible and has objective value $f\left(S_{k} \cup\{k+2\}\right)$. In particular, we have that

$$
f\left(S_{k}\right)-f\left(S_{k+1}\right)+f\left(S_{k+2}\right) \leq f\left(S_{k} \cup\{k+2\}\right)
$$

Hence, $f$ is submodular.
2. Recall the integral polyhedron $P=\left\{x \in[0,1]^{n}: \sum_{i=1}^{n} x_{i} \leq \mathcal{U}\right\}$, for some $\mathcal{U} \in \mathbb{N}$. Is $P$ a submodular polyhedron? In other words, does there exist a submodular function $f$ with $P=P(f)$ or $P=P_{+}(f)$ ? Justify your answer.

Answer: Consider the function $f(S):=\min (|S|, \mathcal{U})$. We show that $P=P_{+}(f)$.
Let $x \in P_{+}(f)$. Then,

- Let $S=N$ and note that $\sum_{i=1}^{n} x_{i}=\sum_{i \in N} x_{i} \leq f(N) \leq \mathcal{U}$.
- Let $S=\{j\}$. Then, $x_{j}=\sum_{i \in\{j\}} x_{i} \leq f(\{j\}) \leq 1$, for every $j \in N$.

This implies that $x \in P$. Conversely, let $x \in P$ and let $S \subseteq N$. There there are two options:

- If $|S| \leq \mathcal{U}$ then $\sum_{i \in S} x_{i} \leq \sum_{i \in S} 1=|S|=f(S)$.
- If $|S|>\mathcal{U}$ then we have that $\sum_{i \in S} x_{i} \leq \sum_{i=1}^{n} x_{i} \leq|\mathcal{U}|=f(S)$.

This implies that $x \in P_{+}(f)$.
We just have to prove that $f$ is a submodular function. Indeed, for any subset $S \subseteq N$ and index $i \in N \backslash S$ we have that

$$
f(S \cup\{i\})-f(S)= \begin{cases}1, & \text { if }|S|<\mathcal{U} \\ 0, & \text { otherwise }\end{cases}
$$

In particular, the following inequality holds

$$
f(S \cup\{i\})-f(S) \geq f(S \cup\{i, j\})-f(S \cup\{j\}),
$$

for every subset $S \subseteq N$ and indexes $i, j \in N \backslash S$. Hence, $f$ is submodular.
3. Let $(N, E)$ be a connected, undirected network. Consider the integer programming formulation

$$
Q_{I}=\left\{x \in \mathbb{Z}_{+}^{E}, y \in \mathbb{Z}_{+}^{2(n-2)|E|} \left\lvert\, \begin{array}{ll}
x_{i j}=y_{i j}^{k}+y_{j i}^{k}, & \{i, j\} \in E, k \neq i, j, \\
x_{i j} \mathbb{1}_{\{i, j\} \in E}+\sum_{k \in \delta(i) \backslash j} y_{i k}^{j}=1, & i \in N, j \in N \backslash i
\end{array}\right.\right\}
$$

Here, $\mathbb{1}$ is the indicator function, equal to one when a statement is true and zero otherwise. Note that the $y$ variables are ordered triples and the last set of constraints ranges over ordered pairs.
a) Prove that $\operatorname{proj}_{x}\left(Q_{I}\right)$ is the set of indicator vectors of spanning trees of $(N, E)$. Hint: Interpret $y_{i j}^{k}$ as indicating that $k$ is on $j$ 's side of the spanning tree.

Answer: Recall that the spanning tree formulation is given by:

$$
P_{I}=\left\{x \in \mathbb{Z}_{+}^{E}: \sum_{e \in E[S]} x_{e} \leq|S|-1, \emptyset \neq S \subsetneq N ; \quad \sum_{e \in E} x_{e}=n-1\right\} .
$$

We start by proving that $P_{I} \subseteq \operatorname{proj}_{x}\left(Q_{I}\right)$. Let $x \in P_{I}$ and define $y \in \mathbb{Z}_{+}^{2(n-2)|E|}$ such that

$$
y_{i j}^{k}= \begin{cases}1, & \text { if } x_{i j}=1 \text { and } k \text { lies in the same connected component as } j \\ \text { when we remove the edge }\{i, j\} \text { from the spanning tree, } \\ 0, & \text { otherwise. }\end{cases}
$$

The constraint $x_{i j}=y_{i j}^{k}+y_{j i}^{k}$ is satisfied for any $\{i, j\} \in E$ and $k \neq i, j$ because if $x_{i j}$ is equal to 1 then $k$ lies either in the same connected component as $j$ or $i$ but not both at the same time, otherwise the subgraph represented by $x$ would have a cycle. If $x_{i j}$ is 0 then $y_{i j}^{k}$ and $y_{j i}^{k}$ are 0 by definition.

The second group of constraints $x_{i j}+\sum_{k \in \delta(i) \backslash j} y_{i k}^{j}=1$ is also satisfied for all $i \in N$, and $j \in N \backslash i$. Indeed, if $x_{i j}$ is equal to 1 then $y_{i k}^{j}$ must equal 0 for all $k \in \delta(i) \backslash\{j\}$, otherwise if some $y_{i k}^{j}$ equal 1 then $x_{i k}$ is also 1 and $j$ lies in the same connected component as $k$. This implies that there are two different paths from $i$ to $j$, i.e., the subgraph represented by $x$ has a cycle. If $x_{i j}$ is 0 then the unique path that connects $i$ and $j$ have length greater than 1 , which means that there exists $r \in \delta(i) \backslash\{j\}$ such that $x_{i r}$ is 1 and there is a unique path from $r$ to $j$. In particular, the variable $y_{i r}^{j}$ is equal to 1 and all the variables $y_{i k}^{j}$ for $k \in \delta(i) \backslash\{j, r\}$ are 0 . Indeed, if $y_{i k}^{j}$ is 1 for some $k \in \delta(i) \backslash\{j, r\}$ then the variable $x_{i k}$ equals 1 and $j$ lies in the same connected component as $k$, which implies that there are two different paths from $i$ to $j$. Hence $(x, y)$ belongs to $Q_{I}$.

Lets prove that $\operatorname{proj}_{x}\left(Q_{I}\right) \subseteq P_{I}$. Indeed, consider $(x, y) \in Q_{I}$. Given $\{i, j\} \in E$, if we sum up the first group of constraints $x_{i j}=\overline{y_{i j}^{k}}+y_{j i}^{k}$ over all $k \neq i, j$ we get

$$
(n-2) \cdot x_{i j}=\sum_{k \in N \backslash\{i, j\}} y_{i j}^{k}+y_{j i}^{k},
$$

and if we sum it over all $\{i, j\} \in E$ we obtain

$$
\begin{equation*}
(n-2) \cdot \sum_{\{i, j\} \in E} x_{i j}=\sum_{\{i, j\} \in E} \sum_{k \in N \backslash\{i, j\}}\left(y_{i j}^{k}+y_{j i}^{k}\right)=\sum_{i \in N} \sum_{j \in \delta(i)} \sum_{k \in N \backslash\{i, j\}} y_{i j}^{k} . \tag{2}
\end{equation*}
$$

Now, we sum up the second group of constraints $x_{i j} \mathbb{1}_{\{i, j\} \in E}+\sum_{k \in \delta(i) \backslash j} y_{i k}^{j}=1$ over all $i \in N$, and $j \in N \backslash i$ :

$$
\begin{align*}
n(n-1) & =\sum_{i \in N} \sum_{j \in N \backslash\{i\}} x_{i j} \mathbb{1}_{\{i, j\} \in E}+\sum_{i \in N} \sum_{j \in N \backslash\{i\}} \sum_{k \in \delta(i) \backslash j} y_{i k}^{j} \\
& =2 \cdot \sum_{\{i, j\} \in E} x_{i j}+\sum_{i \in N} \sum_{k \in N \backslash\{i\}} \sum_{j \in \delta(i) \backslash k} y_{i j}^{k} \\
& =2 \cdot \sum_{\{i, j\} \in E} x_{i j}+\sum_{i \in N} \sum_{j \in \delta(i)} \sum_{k \in N \backslash\{i, j\}} y_{i j}^{k}, \tag{3}
\end{align*}
$$

where the second equality follows from the fact that $x_{i j}$ equals $x_{j i}$ if $\{i, j\} \in E$, and we replace $k$ by $j$ in the triple sum expression. By subtracting Equation (3) from Equation (2), we conclude that $n \cdot \sum_{\{i, j\} \in E} x_{i j}=n(n-1)$, which implies the constraint $\sum_{\{i, j\} \in E} x_{i j}=n-1$.

We now prove the constraint $\sum_{e \in E[S]} x_{e} \leq|S|-1$ is satisfied for every nonempty set $S \subsetneq N$. The idea is the same, except that we sum over all elements of $S$ instead of all elements of $N$. Given $\{i, j\} \in E[S]$, if we sum over $k \in S \backslash\{i, j\}$ in the first constraint group we get

$$
(|S|-2) x_{i j}=\sum_{k \in S \backslash\{i, j\}} y_{i j}^{k}+y_{j i}^{k}
$$

and if we sum it over all $\{i, j\} \in E[S]$ we obtain

$$
(|S|-2) \cdot \sum_{\{i, j\} \in E[S]} x_{i j}=\sum_{\{i, j\} \in E[S]} \sum_{k \in S \backslash\{i, j\}}\left(y_{i j}^{k}+y_{j i}^{k}\right)=\sum_{i \in S} \sum_{j \in \delta(i) \cap S} \sum_{k \in S \backslash\{i, j\}} y_{i j}^{k} .
$$

For the second constraint group, $x_{i j} \mathbb{1}_{\{i, j\} \in E}+\sum_{k \in \delta(i) \backslash j} y_{i k}^{j}=1$, we sum over all $i \in S$ and $j \in S \backslash\{i\}$ :

$$
\begin{aligned}
|S|(|S|-1) & =\sum_{i \in S} \sum_{j \in S \backslash\{i\}} x_{i j} \mathbb{1}_{\{i, j\} \in E}+\sum_{i \in S} \sum_{j \in S \backslash\{i\}} \sum_{k \in \delta(i) \backslash j} y_{i k}^{j} \\
& =2 \cdot \sum_{\{i, j\} \in E[S]} x_{i j}+\sum_{i \in S} \sum_{k \in S \backslash\{i\}} \sum_{j \in \delta(i) \backslash k} y_{i j}^{k} \\
& =2 \cdot \sum_{\{i, j\} \in E[S]} x_{i j}+\sum_{i \in S} \sum_{j \in \delta(i)} \sum_{k \in S \backslash\{i, j\}} y_{i j}^{k} \\
& \geq 2 \cdot \sum_{\{i, j\} \in E[S]} x_{i j}+\sum_{i \in S} \sum_{j \in \delta(i) \cap S} \sum_{k \in S \backslash\{i, j\}} y_{i j}^{k},
\end{aligned}
$$

where the last inequality comes from the fact that the summation over $j \in \delta(i)$ is greater than or equal to the summation over $j \in \delta(i) \cap S$. Therefore, we have that $|S| \cdot \sum_{\{i, j\} \in E[S]} x_{i j} \leq|S|(|S|-1)$, which implies the constraint $\sum_{\{i, j\} \in E[S]} x_{i j} \leq|S|-1$.
b) Let $Q$ be the linear relaxation of $Q_{I}$ where we remove integrality constraints. Prove that $\operatorname{proj}_{x}(Q)$ is the convex hull of indicator vectors of spanning trees.

Answer: In the proof above for the inclusion $\operatorname{proj}_{x}\left(Q_{I}\right) \subseteq P_{I}$ we did not use any specific property of the integers. Indeed, the same argument proves that $\operatorname{proj}_{x}(Q) \subseteq P$ if we replace the set of integers by real numbers. In summary, we have the following properties:
i. $\operatorname{proj}_{x}(Q) \subseteq P$.
ii. $P=\operatorname{conv}\left(P_{I}\right)$.
iii. $\operatorname{proj}_{x}\left(Q_{I}\right)=P_{I}$.

Since the convex hull and the projection operators commute, we have the following identities:

$$
P=\operatorname{conv}\left(P_{I}\right)=\operatorname{conv}\left(\operatorname{proj}_{x}\left(Q_{I}\right)\right)=\operatorname{proj}_{x}\left(\operatorname{conv}\left(Q_{I}\right)\right) \subseteq \operatorname{proj}_{x}(Q)
$$

Hence, $P=\operatorname{proj}_{x}(Q)$.
4. Let $N=\{1, \ldots, n\}$. A collection of subsets $\mathcal{L} \subseteq 2^{N}$ is laminar if $S_{1}, S_{2} \in \mathcal{L}$ implies either $S_{1} \cap S_{2}=\emptyset$, $S_{1} \subseteq S_{2}$ or $S_{1} \supseteq S_{2}$. So at least one of $S_{1} \cap S_{2}, S_{1} \backslash S_{2}$ and $S_{2} \backslash S_{1}$ is empty. It may be helpful to think of a laminar family as a rooted tree, where $N$ is the root, the individual elements are leaves, and other sets are intermediate nodes with adjacency determined by containment.
a) For $N$ and laminar family $\mathcal{L}$, let $A \in\{0,1\}^{\mathcal{L} \times N}$ be the incidence matrix of $\mathcal{L}$ : $a_{S, i}=1$ when $i \in S$ and $a_{S, i}=0$ otherwise. Prove that $A$ is TU.

Answer: Removing a row of $A$ is equivalent to remove a subset of the laminar family and removing a column of $A$ is equivalent to remove an element $i \in N$ from all subsets $S \in \mathcal{L}$. Thus, any square submatrix $B \in\{0,1\}^{k \times k}$ of $A$ is the incidence matrix of a laminar family $\mathcal{L}^{\prime} \subseteq 2^{N^{\prime}}$.

Since elementary row operations do not change the determinant of a matrix we can subtract the rows associated to subsets $S_{1}$ and $S_{2}$ such that $S_{1} \subseteq S_{2}$ and redefine the subset $S_{2}$, i.e., $S_{2}:=S_{2} \backslash S_{1}$. The resulting matrix $\widetilde{B}$ is the incidence matrix of a laminar family where all the subsets are disjoints. Thus, each column of $\widetilde{B}$ has at most one +1 , which implies that

$$
\operatorname{det} B=\operatorname{det} \widetilde{B} \in\{0, \pm 1\}
$$

b) Let $\mathcal{L}_{1}$ and $\mathcal{L}_{2}$ be two laminar families, and let $\mathcal{L}=\mathcal{L}_{1} \cup \mathcal{L}_{2}$. Prove that the incidence matrix $A$ of $\mathcal{L}$ is TU.

Answer: Let $B$ be a square submatrix of $A$. Let $S_{1}, S_{2} \in \mathcal{L}_{1}$ be two rows of $B$ such that $S_{1} \subseteq S_{2}$. Subtract $S_{1}$ from $S_{2}$ and redefine the subset $S_{2}$, i.e., $S_{2}:=S_{2} \backslash S_{1}$. Analogously for the subsets of the other laminar family $\mathcal{L}_{2}$, that is, $S_{1}^{\prime}, S_{2}^{\prime} \in \mathcal{L}_{2}$ such that $S_{1}^{\prime} \subseteq S_{2}^{\prime}$. Thus, each column of $\widetilde{B}$ has at most two 1's. Given a column with two 1 's, the associated rows are subsets $S$ and $S^{\prime}$ that belong to different laminar families, that is, $S \in \mathcal{L}_{1}$ and $S^{\prime} \in \mathcal{L}_{2}$.
We expand the determinant for the columns with exactly one 1 , which results in a submatrix $\bar{B}$. There are two possibilities for $\bar{B}$ :
(i) There exists a column of 0 's in $\bar{B}$. This implies that $\operatorname{det} \bar{B}=0$.
(ii) All the columns of $\bar{B}$ have exactly two 1's. Thus, the matrix $\bar{B}$ is the node-edge incidence matrix of a bipartite graph, where the nodes are the rows of $\bar{B}$ and $\mathcal{L}_{1} \cup \mathcal{L}_{2}$ is the node partition. Hence, $\bar{B}$ is TU .
Therefore,

$$
\operatorname{det} B=\operatorname{det} \widetilde{B}=\operatorname{det} B^{\prime} \in\{0, \pm 1\}
$$

Now consider a submodular function $f: 2^{N} \rightarrow \mathbb{R}$ with $f(\emptyset)=0$, and recall the submodular polyhedron $P(f)$.
c) Let $A, B \subseteq N$ be two sets with $A \backslash B, B \backslash A, A \cap B \neq \emptyset$. Show that if the constraints for $A$ and $B$ are binding, then so are the constraints for $A \cap B$ and $A \cup B$. Show that these four binding constraints define a constraint matrix of rank three.

Answer: Indeed, we have the following relations

$$
\begin{aligned}
f(A)+f(B) & \geq f(A \cap B)+f(A \cup B) \\
& \geq \sum_{i \in A \cap B} x_{i}+\sum_{j \in A \cup B} x_{j} \\
& =\sum_{i \in A} x_{i}+\sum_{j \in B} x_{j}=f(A)+f(B)
\end{aligned}
$$

where the first inequality follows from the submodularity of $f$, the second inequality is a consequence of the feasibility of $x$, the third relation is an equality obtained by rearranging the summation, and the last equality follows from the hypothesis. Therefore, we get that $f(A)+f(B)=f(A \cap B)+f(A \cup B)$.
This implies that the constraints associated to $A \cap B$ and $A \cup B$ are also binding, otherwise if $f(A \cap B)>$ $\sum_{i \in A \cap B} x_{i}$ or $f(A \cup B)>\sum_{i \in A \cup B} x_{i}$ we would get that $f(A \cap B)+f(A \cup B)>f(A)+f(B)$, which is a contradiction.
Consider the matrix induced by the constraints associated to $A, B, A \cap B$, and $A \cup B$ :

$$
M_{i j}= \begin{cases}1, & \text { if } i=1 \text { and } j \in A \cap B \\ 1, & \text { if } i=2 \text { and } j \in A, \\ 1, & \text { if } i=3 \text { and } j \in B, \\ 1, & \text { if } i=4 \text { and } j \in A \cup B, \\ 0, & \text { o.w.. }\end{cases}
$$

Since elementary row operations do not change the rank of a matrix, we can subtract the first row of $M$ from the second and third rows. Thus, we get the matrix

$$
M_{i j}^{\prime}= \begin{cases}1, & \text { if } i=1 \text { and } j \in A \cap B, \\ 1, & \text { if } i=2 \text { and } j \in A \backslash B, \\ 1, & \text { if } i=3 \text { and } j \in B \backslash A, \\ 1, & \text { if } i=4 \text { and } j \in A \cup B, \\ 0, & \text { o.w.. }\end{cases}
$$

If we subtract the first, second, and third rows of $M^{\prime}$ from its forth row, we get a zero row vector:

$$
\widetilde{M}_{i j}= \begin{cases}1, & \text { if } i=1 \text { and } j \in A \cap B, \\ 1, & \text { if } i=2 \text { and } j \in A \backslash B, \\ 1, & \text { if } i=3 \text { and } j \in B \backslash A, \\ 0, & \text { if } i=4, \\ 0, & \text { o.w.. }\end{cases}
$$

Hence, $\operatorname{rank}(M)=\operatorname{rank}(\widetilde{M}) \leq 3$. The rank of $\widetilde{M}$ is indeed 3 because if we take one element of $A \cap B$, $A \backslash B$, and $B \backslash A$ the submatrix obtained is equivalent to the identity matrix:

$$
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

d) For any face $F \subseteq P(f)$, show that you can choose the linearly independent binding constraints defining $F$ so they form a laminar family.

Answer: Let $F$ be a face of $P(f)$. There exist $S_{1}, \ldots, S_{r} \subseteq N$ such that the face $F$ is represented as

$$
F=\left\{x \in P(f): \sum_{i \in S_{k}} x_{i}=f\left(S_{k}\right), k=1, \ldots, r\right\}
$$

From item (c), all possible pairwise intersections and unions generated from $S_{1}, \ldots, S_{r}$ are implicit equalities for $F$. We can apply elementary rows operations (Gaussian elimination) to create a set partition of $S_{1} \cup \cdots \cup S_{k}$ whose corresponding equality constraints represent $F$. In other words, $F=\{x \in P(f)$ : $\left.\sum_{i \in B} x_{i}=f(B), B \in \mathcal{L}\right\}$ where $\mathcal{L}$ is

$$
\mathcal{L}=\left\{B \in 2^{N}: B=\left(\bigcap_{k \in \mathcal{A}} S_{k}\right) \bigcap\left(\bigcap_{k \in \mathcal{A}^{\complement}} S_{k}^{\complement}\right), \mathcal{A} \subseteq\{1, \ldots, r\},|A| \geq 1\right\}
$$

Moreover, $\mathcal{L}$ is a laminar family because $\mathcal{L}$ is a set partition of $S_{1} \cup \cdots \cup S_{k}$.
e) Conclude that for two integer-valued submodular functions $f, g: 2^{N} \rightarrow \mathbb{Z}$, the polyhedron $P(f) \cap P(g)$ is integral.

Answer: We prove that any face $F$ of $P(f) \cap P(g)$ is integral. From item (d), if $F$ is a face of $P(f) \cap P(g)$ then there are laminar families $\mathcal{L}_{1}, \mathcal{L}_{2}$ such that

$$
F=\left\{x \in P(f) \cap P(g): \begin{array}{ll} 
& \sum_{i \in B_{1}} x_{i}=f\left(B_{1}\right), B_{1} \in \mathcal{L}_{1} \\
& \sum_{i \in B_{2}} x_{i}=g\left(B_{2}\right), B_{2} \in \mathcal{L}_{2} .
\end{array}\right\} .
$$

If $f(B)$ differs from $g(B)$ for some $B \in \mathcal{L}_{1} \cap \mathcal{L}_{2}$ then $F$ is empty. Otherwise, the function given by

$$
h(B)= \begin{cases}f(B), & \text { if } B \in \mathcal{L}_{1} \\ g(B), & \text { if } B \in \mathcal{L}_{2}\end{cases}
$$

is well-defined. Note that we can describe the face $F$ as

$$
F=\left\{x \in P(f) \cap P(g): \sum_{i \in B} x_{i}=h(B), B \in \mathcal{L}_{1} \cup \mathcal{L}_{2}\right\}
$$

Since the constraint matrix of $\sum_{i \in B} x_{i}=h(B)$ for all $B \in \mathcal{L}_{1} \cup \mathcal{L}_{2}$ is the indicator matrix of the union of two laminar families, we have from item (b) that it is totally unimodular (TU). Hence, $F$ is integral.

