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1. Let (N,E) be an undirected network, and consider the polytope

Pd =

x ∈ RE+ :
∑
e∈δ(i)

xe ≤ d, i ∈ N

 ,

for d ∈ N

a) Suppose the network is bipartite; show that P1 is integral by showing that any fractional point cannot
be extreme. Hint: Start by assuming the network has a cycle. Then argue the acyclic case.

Answer: Let x ∈ P1 be a fractional solution. Let E(x) = {e ∈ E : xe ∈ (0, 1)} be the set of edges
associated to a fraction coordinate of x. Let ε = mine∈E(x)

(
min{xe, 1 − xe}

)
. Recall that a bipartite

graph cannot contain odd cycles. Then, there are two possibilities for the graph G(x) := (N,E(x)):

i. G(x) has an even cycle C. Let i1i2 · · · i2ki1 be the of nodes C. We can define two other solutions

x1, x2 ∈ P1 such that x = x1+x2

2 :

x1e =


xe + ε, if e = (ir, ir+1) and r is even,

xe − ε, if e = (ir, ir+1) and r is odd or e = (i2k, i1),

xe, if e does not belong to C,

x2e =


xe − ε, if e = (ir, ir+1) and r is even,

xe + ε, if e = (ir, ir+1) and r is odd or e = (i2k, i1),

xe, if e does not belong to C.

(1)

Hence, x cannot be an extreme point.

ii. G(x) is acyclical. Let P = i1 · · · in be a maximal path in G(x). Note that xe must be 0 for any
edge in δ(i1) ∪ δ(in)\E(x). Indeed, if xe is 1 for some edge e ∈ δ(i1)\E(x) then the constraint∑
e∈δ(i1) xe ≤ 1 implies that the solution xe′ for the edge e′ = (i1, i2) cannot be fraction. Similarly,

for e ∈ δ(in)\E(x). Thus, xe must be 0 for any edge in δ(i1) ∪ δ(in)\E(x). We define two other

solutions x1, x2 ∈ P1 such that x = x1+x2

2 analogously to (1):

x1e =


xe + ε, if e = (ir, ir+1) and r is even,

xe − ε, if e = (ir, ir+1) and r is odd,

xe, if e does not belong to P ,

x2e =


xe − ε, if e = (ir, ir+1) and r is even,

xe + ε, if e = (ir, ir+1) and r is odd,

xe, if e does not belong to P .

(2)
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Hence, x cannot be an extreme point.

b) Now suppose the network is not necessarily bipartite; prove that P2 is integral, by again arguing that
a fractional point cannot be extreme. Hint: Start with your argument from (a) and then think of how
many variables can have positive value.

Answer: Given a graph G = (N,E), we create a bipartite graph G = (N ′ ∪N ′′, E) with partitions N ′

and N ′′ by duplicating each node i ∈ N into i′ and i′′ in N ′ and N ′′, respectively. For each edge {i, j} ∈ E
we create the edges {i′, j′′} and {i′′, j′} in the sets E1 and E2, respectively. We define the set of edges E
as E1 ∪ E2. Consider the following polytope Q:

Q =

y ∈ RE+ :
∑

e∈δG(k)

ye ≤ 1, ∀k ∈ N ′ ∪N ′′
 . (3)

From question (a), we know that Q is an integral polytope. Let A : RE → RE be the following linear
transformation:

[A(y)]e := ye1 + ye2 , (4)

where e = {i, j} ∈ E, e1 = {i′, j′′} ∈ E1, and e2 = {i′′, j′} ∈ E2. It is enough to prove that P2 = A(Q)
since the extreme points of the image of a polyhedron is the image of the extreme points, and the sum
of two integral vectors is an integral vector.

Indeed, let x ∈ P2. Then, define y ∈ RE+ as follows:

ye =

{
xe/2, if e = {i′, j′′} ∈ E1, where e = {i, j},
xe/2, if e = {i′′, j′} ∈ E2, where e = {i, j}.

It follows from the definition of the bipartite graph G that
∑
e∈δG(k) ye ≤ 1. So, P2 ⊆ A(Q). Conversely,

for any y ∈ Q, we have that x defined as A(y) is such that∑
e∈δG(i)

xe =
∑

e∈δG(i)

(ye1 + ye2) =
∑

e∈δG(i′)

ye +
∑

e∈δG(i′′)

ye ≤ 2.

Thus, P2 ⊇ A(Q). Hence, we conclude that P2 = A(Q).

2. Consider polytopes Pk = {x ∈ Rn : Akx ≤ bk} for k = 1, . . . ,K, and recall the copies method: We model⋃
k Pk with

QI =

{
x, x1, . . . , xK ∈ Rn; z ∈ {0, 1}K : x =

K∑
k=1

xk;

K∑
k=1

zk = 1; Akxk ≤ bkzk, ∀k

}

Let Q be the linear relaxation of QI , where z ∈ [0, 1]K . Prove that Q = conv(QI), and thus projx(Q) =
conv(

⋃
k Pk) Hint: If you can prove it for K = 2 you can prove it for any K.

Answer: We observe that conv(QI) ⊆ Q, since Q is the linear relaxation of QI . To prove the reverse inclusion,
we need to show that any vector of Q is the convex combination of vectors in QI . Let (x, x1, . . . , xk, z) ∈ Q
and let I(z) =

{
i ∈ {1, . . . , k} : zi > 0

}
. Note that

I(z) is nonempty,

x̃i :=
1

zi
xi ∈ Pi, ∀i ∈ I(z), and

xi = 0, ∀i ∈ {1, . . . , k}\I(z).

Recall that (x̃, x̃1, . . . , x̃k, z̃) belongs to QI if, and only if,

x̃ = x̃i, x̃i ∈ Pi, x̃j = 0 for all j 6= i, and z̃ = ei for some i ∈ {1, . . . , k}, (5)
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This concludes that (x, x1, . . . , xk, z) is the convex combination of vectors in QI , as indicated by (5), with
weights {zi}i∈I(z).
For the last part, note that projxQI =

⋃
k Pk and the equality

projx
(

convA
)

= conv
(

projxA
)

holds for any subset A. Hence, projx(Q) = projx(convQI) = conv(
⋃
k Pk).

3. For an undirected network (N,E) without isolated nodes, consider the polytope P ⊆ R+ defined by non-
negativity and the constraints xi + xj ≤ 2, for {i, j} ∈ E.

a) Suppose the network has a cycle. Show that the constraints defined by the edges of the cycle are linearly
independent if and only if the cycle is odd.

Answer: Let C be the cycle defined by the nodes i1i2 · · · in. The coefficient matrix An that represents
the constraints xi + xj ≤ 2 for edges {i, j} ∈ E(C) can be represented as:

An =

i1 i2 i3 i4 · · · in−1 in



1 1 {i1, i2}
1 1 {i2, i3}

1 1 {i3, i4}
. . .

...
1 1 {in−1, in}

1 1 {in, i1}

(6)

We show by induction that detAn = 2 if n is odd, and detAn = 0 if n is even. Indeed, the base cases
detA3 and detA4 can be easily computed:

detA3 =

∣∣∣∣∣∣
1 1

1 1
1 1

∣∣∣∣∣∣ (L2−L3)
=

∣∣∣∣∣∣
1 1
−1 1 0
1 1

∣∣∣∣∣∣ (L1−L2)
=

∣∣∣∣∣∣
2 0
−1 1 0
1 1

∣∣∣∣∣∣ = 2,

detA4 =

∣∣∣∣∣∣∣∣
1 1

1 1
1 1

1 1

∣∣∣∣∣∣∣∣
(L3−L4)

=

∣∣∣∣∣∣∣∣
1 1

1 1
−1 1 0
1 1

∣∣∣∣∣∣∣∣
(L2−L3)

=

∣∣∣∣∣∣∣∣
1 1
1 1 0
−1 1 0
1 1

∣∣∣∣∣∣∣∣
(L1−L2)

=

∣∣∣∣∣∣∣∣
0 0
1 1 0
−1 1 0
1 1

∣∣∣∣∣∣∣∣ = 0.

We complete our proof by showing that detAn = detAn−2:

detAn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1
1 1

1 1
. . .

1 1
1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(C2−C1)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0
1 1

1 1
. . .

1 1
1 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(C3−C2)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0
1 0

1 1
. . .

1 1
1 −1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
1 1

. . .

1 1
1 1

∣∣∣∣∣∣∣∣∣ = detAn−2.
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b) Use your answer in (a) to show that the polytope is integral, by arguing directly that every extreme
point must be integral.

Answer: Let A be the incidence matrix of the constraints xi+xj ≤ 2, for {i, j} ∈ E, where the rows and
columns represent the edges and nodes of the graph G = (N,E), respectively, as illustrated in Eq. (6).
An extreme point x to the polytope P = {x ∈ RE : Ax ≤ 2 · 1, x ≥ 0} is the unique solution to

HxH = 2 · 1H ,
xH{ = 0,

where H ∈ Rk×k is a square non-singular submatrix of A, 1H ∈ Rk is a vector of 1’s, xH ∈ Rk

and xH{ ∈ Rn−k are subvectors of x ∈ Rn, and n := |N |. From the Cramer’s rule, we have that

(xH)i =
detHi

detH
,

where Hi is the matrix formed by replacing the i-th column of H by the column vector 2 · 1H . Let H̃i

be the matrix formed by replacing the i-th column of H by the column vector 1H (instead of 2 · 1H).
Note that

detHi = 2k · det H̃i, and det H̃i ∈ Z.

If we prove that detH is equal to 2l for some l ≤ k then we conclude that xH is integral.

Below we have some comments regarding detH:

i. By performing row expansions on the determinant of H, we eliminate the rows of H with only one 1.
The result is the determinant of an incidence matrix of a subgraph of G.

ii. By performing column expansions on the determinant of H, we eliminate the column of H with only
one 1. This result in the determinant of an incidence matrix H of a subgraph GH for which all the
nodes have degree at least 2.

iii. Each connected component of GH = (NH , EH) must have the same number of nodes and edges.
Indeed, since |NH | = |EH |, if some connected component have more edges than nodes then there is
another connected component with more nodes than edges, which implies that there exist at least
one node of degree 1. However, this cannot happen because of the previous step. Thus, the incidence
matrix H is a block diagonal matrix of square matrices Hr ∈ Rkr×kr ,

detH =


H1

H2

. . .

H l

 , and detH = detH =

l∏
r=1

detHr, (7)

where l ≤ k is the number of connected components of GH and Hr is the incidence matrix of a
connected component, for all 1 ≤ r ≤ l.

iv. Because the graph GHr
= (NHr

, EHr
) is connected, |NHr

| = |EHr
|, and the degree of each node

is at least 2 then GHr
must be a cycle. In particular, the graph GHr

must be an odd cycle, for
every r = 1, . . . , l, otherwise the matrix H would be singular.

This concludes our proof that detH = 2l, for some l ≤ k.

4. Let A be a TU matrix with full row rank, and let B be a basis of A. Prove that B−1A is TU.

Answer: Recall that a matrix H ∈ Rm×n is TU if, and only if, [H, Im] ∈ Rm×(m+n) is unimodular. Thus,
we show that C := [B−1A, Im] is unimodular. Let M ⊆ {1, . . . , (n + m)} be a subset of columns of C with
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cardinality m, that is, |M | = m. Let M1 := M ∩ {1, . . . , n} and M2 := M ∩ {n + 1, . . . ,m + n}. Denote
by CM the matrix formed by the columns in M . Then, we can represent CM as follows:

CM =
[
(B−1Aj)j∈M1

, (ej)j∈M2

]
= B−1

[
(Aj)j∈M1

, (Bj)j∈M2

]
= B−1

[
AM1 , BM2

]
= B−1

[
AM1

, AM2

]
where Aj and Bj are the j-th column of A and B, respectively, and ej is the j-th element of the canonical
basis. Since B and

[
AM1

, AM2

]
are square submatrices of A their determinant are in {0,±1}. Therefore,

detCM = detB−1 · det
[
AM1 , AM2

]
∈ {0,±1}.

Hence, C is unimodular.

5. Let A ∈ {0, 1}n×(n+1) be a matrix consisting of an identity matrix appended with a column of all 1’s. Prove
that A is TU directly from the definition, i.e. by showing that all square sub-matrices have determinants in
{0,±1}.

Answer: Let H ∈ Rk×k be a square submatrix of A. If H does not contain the last column of A then H is
just a submatrix of the identity In, so det(H) ∈ {0,±1}. If H contains the last column, one could represent
it as [B, 1], where 1 ∈ Rk is a column vector of 1’s, and B ∈ Rk×(k−1) is a submatrix of In. Recall that if we
subtract a row from another row it does not change the determinant of a matrix. Thus, we have that

det
(
[B, 1]

)
= det

(
[B̃, e1]

)
= det B̂ ∈ {0,±1},

where B̃ is a submatrix of B obtained by subtracting the consecutive rows of B from the first row of B, and
B̂ ∈ R(k−1)×(k−1) is the submatrix obtained by removing the first row of B̃.
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