Discrete Optimization
 ISyE 6662 - Spring 2023
 Homework 3

Instructor: Alejandro Toriello
TA: Filipe Cabral

February 22, 2023.

1. Let $G=(N, A)$ be a directed graph, $s, t \in N$ and let $w_{a} \in \mathbb{Q}$ be arc weights. Recall that a directed path is a sequence of arcs $P=\left(a_{1}, \ldots, a_{k}\right)$ in which a_{l} 's head is a_{l+1} 's tail, and in which no node repeats. Show that the decision version of directed TSP polynomially reduces to asking if some directed s-t path in G has total weight less than some number.

Answer: From $G=(N, A)$, we create another directed graph $\widetilde{G}=(\widetilde{N}, \widetilde{A})$ as follows:

- Duplicate each $n \in N$ and denote by $n^{\prime}, n^{\prime \prime} \in \widetilde{N}$.
- For every arc that arrives to n in G it does arrive to n^{\prime} in \widetilde{G}, and every arc that departs from n in G it does depart from $n^{\prime \prime}$ in \widetilde{G}. Those arcs have the same weight $w_{a} \in \mathbb{Q}$.
- Create an arc from n^{\prime} to $n^{\prime \prime}$ with weight $-M$, where $M=2 \sum_{a \in A}\left|w_{a}\right|+1$.

Fixed $n^{\prime}, n^{\prime \prime} \in \tilde{N}$, we prove that the TSP instance has a solution with total weight less than or equal to d if and only if there exists a directed $n^{\prime}-n^{\prime \prime}$ path in \widetilde{G} with total weight less than or equal to $d-M(|N|-1)$, where $|d| \leq \sum_{a \in A}\left|w_{a}\right|$.
Indeed, given a TSP solution with total weight less than or equal to d, the corresponding sequence of arcs in \widetilde{G} can be completed to a directed $n^{\prime}-n^{\prime \prime}$ Hamiltonian path by including the transition arcs from a node m^{\prime} to $m^{\prime \prime}$, for every $m^{\prime}, m^{\prime \prime} \in \widetilde{N} \backslash\left\{n^{\prime}, n^{\prime \prime}\right\}$. The total weight of such directed path is less than or equal to $d-M(|N|-1)$ since there will be $|N|-1$ arcs of weight $-M$ in any directed $n^{\prime}-n^{\prime \prime}$ Hamiltonian path.
Conversely, consider a directed $n^{\prime}-n^{\prime \prime}$ path with total weight less than or equal to $d-M(|N|-1)$. We have to prove that such directed path is Hamiltonian, that is, it traverses every pair of nodes ($m^{\prime}, m^{\prime \prime}$), where $m^{\prime}, m^{\prime \prime} \in \tilde{N} \backslash\left\{n^{\prime}, n^{\prime \prime}\right\}$. If it does not traverse some pair $\left(m^{\prime}, m^{\prime \prime}\right)$ then $-\sum_{a \in A}\left|w_{a}\right|-M(|N|-1)$ is a lower bound on the total weight of the directed path. However, this lower bound implies the following inequality

$$
\begin{aligned}
d-M(|N|-1) \geq-\sum_{a \in A}\left|w_{a}\right|-M(|N|-2) & \Longleftrightarrow d+\sum_{a \in A}\left|w_{a}\right| \geq M \\
& \Longleftrightarrow 2 \sum_{a \in A}\left|w_{a}\right| \geq M
\end{aligned}
$$

which is a contradiction. Therefore, a directed $n^{\prime}-n^{\prime \prime}$ path with total weight $d-M(|N|-1)$ must traverse all the nodes in \widetilde{G}. Thus, the induced sequence of arcs in G defines a Hamiltonian cycle with total cost less than or equal to d.
2. Recall the uncapacitated facility location problem. We have a set of candidate locations $M=\{1, \ldots, m\}$, and a set of customers $N=\{1, \ldots, n\}$. Opening a facility at location $i \in M$ incurs a fixed cost of $f_{i} \geq 0$, and satisfying j 's demand from i incurs a cost of $c_{i j} \geq 0$. Customers can only be served from i if the facility
is open, but there is no other constraint (such as capacity) on what the facility can serve. Show that the decision version is NP-complete using 3-SAT.

Answer: The construction of the Uncapacitated Facility Location (UFL) instance from 3-SAT is similar to the Vertex Cover construction. Indeed, we define the same graph from the 3-SAT instance and interpret the nodes as facilities and the edges as customers.
Indeed, consider an instance $(\mathcal{U}, \mathcal{C})$ of the 3-SAT such that $\mathcal{U}:=\left\{x_{1}, \ldots, x_{\nu}\right\}$ is the set of variables and $\mathcal{C}:=\left\{C_{1}, \ldots, C_{k}\right\}$ is the set of clauses. Then, construct a graph $G=(N, E)$ in the following way:

- For each variable $x \in \mathcal{U}$, create a pair of nodes $[x]$ and $[\bar{x}]$. We refer to $[x]$ and $[\bar{x}]$ as variable nodes. Connect $[x]$ and $[\bar{x}]$ by an edge called variable edge.
- For each clause $C_{i} \in \mathcal{C}$, create three nodes denoted by $\left[C_{i}, l_{i, 1}\right]$, $\left[C_{i}, l_{i, 2}\right]$, and $\left[C_{i}, l_{i, 3}\right]$, where $l_{i, 1}, l_{i, 2}$, and $l_{i, 3}$ are the three literals of C_{i}. We refer to those nodes as clause nodes. Connect all the three clause nodes by an edge and form a clique of size 3 . Those edges are called clause edges.
- Connect a variable node $[u]$ to a clause node $\left[C_{i}, l_{i j}\right]$ if the literals $l_{i j}$ and u are the same. Call this edge a forcing edge.
A few remarks are instructive for this graph.
(i) The number of nodes is $|N|=2 \nu+3 k$ and the number of edges is $|E|=2 \nu+6 k$.
(ii) A lower bound on the size of a vertex cover for G is $\nu+2 k$. This is because the pair of variable nodes $[x]$ and $[\bar{x}]$ form a clique of size 2 and the variable clauses $\left[C_{i}, l_{i, 1}\right],\left[C_{i}, l_{i, 2}\right]$, and $\left[C_{i}, l_{i, 3}\right]$ form a clique of size 3. Recall that to cover the edges of a clique of size r one needs at least $r-1$ nodes from the clique.

We now define a UFL instance whose solution is essentially the minimum cardinality vertex cover. Indeed, let $f_{i}=1$ for every node $i \in N$ and let

$$
c_{i e}= \begin{cases}0, & \text { if } i \in e \\ M, & \text { if } i \notin e\end{cases}
$$

for all $i \in N$ and $e \in E$, where $M:=|N|+1$. Then, our UFL instance is defined as

$$
\begin{array}{cll}
\min & \sum_{i \in N} \sum_{e \in E} c_{i e} z_{i e}+\sum_{i \in N} x_{i} & \\
\mathrm{s.t.} & \sum_{i \in N} z_{i e}=1, & \forall e \in E, \\
& \sum_{e \in E} z_{i e} \leq|E| \cdot x_{i}, & \forall i \in N, \\
& x_{i} \in\{0,1\}, z_{i e} \geq 0, & \forall i \in N, \forall e \in E .
\end{array}
$$

Note that any vertex cover $D \subseteq N$ induces a UFL solution with objective cost equal to $|D|$, and any feasible solution (x, z) to the UFL instance such that the set $\left\{i \in N \mid x_{i}=1\right\}$ is not a vertex cover has objective cost greater than $|N|$. In particular, $\nu+2 k$ is a lower bound for the optimal value of the UFL instance

We now complete the proof by showing that the 3-SAT instance is satisfiable if and only if there exists a feasible solution to the UFL instance with objective cost less than or equal to $\nu+2 k$, or in other words, a vertex cover of cardinality $\nu+2 k$.

Indeed, suppose the 3-SAT is satisfiable and let A be an assignment that makes all the clauses true. Consider the subset of nodes $D \subseteq N$ defined as follows:

- The subset D contains all the variable nodes $[u]$ such that the literal u is true by the assignment A.
- For each clause C_{i}, the subset D contains the other two clause nodes $\left\{\left[C_{i}, l_{i, j}\right]\right\}_{j=1, j \neq r}^{3}$ if some literal $l_{i, r}$ is true by the assignment A.

Note that D has cardinality $\nu+2 k$. We prove that D is a vertex cover. Indeed, each variable edge induced by the nodes $[x]$ and $[\bar{x}]$ is covered by exactly one node in D. The clause edges in the clique defined by the node clauses $\left[C_{i}, l_{i, 1}\right],\left[C_{i}, l_{i, 2}\right]$, and $\left[C_{i}, l_{i, 3}\right]$ are covered by exactly 2 node in D. The forcing edge between a variable node $[u]$ and a clause node $\left[C_{i}, u\right]$ is covered by $[u] \in D$ if the literal u is assigned true in A or it is covered by $\left[C_{i}, u\right]$ otherwise. Therefore, D is a vertex cover of cardinality $|D|=\nu+2 k$.

Conversely, suppose that G has a vertex cover $D \subseteq N$ of cardinality $|D|=\nu+2 k$. Then, exactly one variable node among $[x]$ and $[\bar{x}]$ belongs to D, for each variable $x \in \mathcal{U}$, and exactly two node clauses among $\left[C_{i}, l_{i, 1}\right]$, $\left[C_{i}, l_{i, 2}\right]$, and $\left[C_{i}, l_{i, 3}\right]$ belongs to D, for each clause $C_{i} \in \mathcal{C}$. Thus, the literals of the selected variable nodes can be made true and they induce a Boolean assignment A of the variables in \mathcal{U}. For each clause C_{i}, the one node clause $\left[C_{i}, u\right]$ that does not belong to D is connected to the node variable $[u]$ that must belong to D, otherwise the corresponding forcing edge is not covered by D. This proves that the assignment satisfies all the clauses and the 3-SAT is satisfiable.
3. Consider a knapsack feasible set $S=x \in\{0,1\}^{N}: \sum_{i \in N} a_{i} \leq b$, where we assume $a_{i} \leq b$ for any $i \in N$, i.e. every item can individually fit in the knapsack, and thus S is full-dimensional. Consider a set $C \subseteq N$ satisfying $\sum_{i \in C} a_{i}>b$.
(a) Prove that $\sum_{i \in C} x_{i} \leq|C|-1$ is valid for S.

Answer: Because the knapsack coefficients a_{i} 's are non-negative we have the inequality $\sum_{i \in C} a_{i} x_{i} \leq b$. If a solution x satisfies $\sum_{i \in C} x_{i} \geq|C|$ then x_{i} equals 1 for every node $i \in C$ but this violates the condition $\sum_{i \in C} a_{i} x_{i} \leq b$. Thus, the inequality $\sum_{i \in C} x_{i} \leq|C|-1$ is valid for S.
(b) Give necessary and sufficient conditions for the inequality to be facet-defining for $\operatorname{conv}(S)$.

Answer: We prove that the necessary and sufficient condition are
(i) The cover C is a minimal cover, that is, $\sum_{i \in C \backslash\{j\}} a_{i} \leq b$, for all $j \in C$.
(ii) There exists $k \in C$ such that $\sum_{i \in C \backslash\{k\}} a_{i}+a_{n} \leq b$, for all $n \in N \backslash C$.

Indeed, suppose that conditions (i) and (ii) hold. Denote by $\mathbf{1}_{C} \in\{0,1\}^{N}$ the vector with 1 's at the coordinates $i \in C$, and 0's otherwise. Then, $\left\{\mathbf{1}_{C}-e_{i}: i \in C\right\} \cup\left\{\mathbf{1}_{C}-e_{k}+e_{n}: n \in N \backslash C\right\}$ are $|N|$ affinely independent vectors that belong to the face F induced by the valid inequality $\sum_{i \in C} x_{i} \leq|C|-1$, that is,

$$
F:=\operatorname{conv}(S) \cap\left\{x \in \mathbb{R}^{N}\left|\sum_{i \in C} x_{i}=|C|-1\right\} .\right.
$$

So, F has dimension greater than or equal to $|N|-1$. The constraint $\sum_{i \in C} x_{i}=|C|-1$ is not an implicit equality of $\operatorname{conv}(S)$ since $\operatorname{conv}(S)$ is full dimensional. This implies that the dimension of F is less than or equal to $|N|-1$. Thus, F has dimension $|N|-1$ and it is a facet of $\operatorname{conv}(S)$.

Conversely, suppose that F is a facet of $\operatorname{conv}(S)$. Assume by contradiction that C is not a minimal cover, i.e., there exists a proper subset $C^{\prime} \subsetneq C$ that is also a cover. This implies that the valid inequality $\sum_{i \in C} x_{i} \leq|C|-1$ can be obtained by the summation of the valid inequalities $\sum_{i \in C^{\prime}} x_{i} \leq\left|C^{\prime}\right|-1$ and $x_{r} \geq 0$ for all $r \in C \backslash C^{\prime}$. So, the valid inequality $\sum_{i \in C} x_{i} \leq|C|-1$ is redundant, so it is not facet-defining for $\operatorname{conv}(S)$, which is a contradiction. Thus, C must be a minimal face and condition (i) is necessary.
Let $k \in C$ be such that $\sum_{i \in C \backslash\{k\}} a_{i}$ is minimum. Assume by contradiction that there exists $n \in N \backslash C$ such that $\sum_{i \in C \backslash\{k\}} a_{i}+a_{n}>b$. Then, F is contained into the affine space

$$
H:=\left\{x \in \mathbb{R}^{N}\left|\sum_{i \in C} x_{i}=|C|-1, x_{n}=0\right\} .\right.
$$

Because H has dimension $|N|-2$ we conclude that F is not a facet, which is a contradiction. Thus, condition (ii) is also necessary.
4. Let (N, E) be an undirected, connected network, and let $S \subseteq\{0,1\}^{E}$ be the set of indicator vectors of spanning trees. For each question below, justify your answer with a proof.
（a）Can S ever be full－dimensional？
Answer：No，because S is contained into the proper affine subspace $H:=\left\{x \in \mathbb{R}^{E}\left|\sum_{e \in E} x_{e}=|N|-1\right\}\right.$ ．
（b）Suppose the network is itself a tree．What is $\operatorname{dim}(S)$ ？
Answer：The dimension of S is $\operatorname{dim}(S)=0$ since the only feasible solution is the tree itself．In other words，the cardinality of S is 1 ．
（c）Suppose the network is a cycle．What is $\operatorname{dim}(S)$ ？
Answer：The dimension of S is $\operatorname{dim}(S)=|E|-1$ ．Indeed， $\operatorname{dim}(S)$ is less than or equal to $|E|-1$ ，and $\left\{\mathbf{1}_{E}-e_{l} \mid l \in E\right\}$ are $|E|$ affinely independent indicator vectors in S ．
（d）What is $\operatorname{dim}(S)$ in the general case？Use your previous answers．
Answer：It was announced in Canvas by professor Toriello．

5．Let (N, A) be a complete directed network，and let $S \subseteq\{0,1\}^{A}$ be the set of indicator vectors of directed Hamiltonian cycles．What is $\operatorname{dim}(S)$ ？Justify your answer．

Answer：The dimension of S is

$$
\operatorname{dim}(S)=(|N|-1)(|N|-2)-1
$$

In order to prove this formula，we reduce the problem of a Hamiltonian cycle in a complete directed graph with n nodes to the Hamiltonian path in a complete directed graph with $n-1$ nodes．

Indeed，given any enumeration of the nodes $N=\left\{v_{1}, \ldots, v_{n}\right\}$ ，a Hamiltonian cycle C in a complete directed graph K_{n} is the indicator vector of the arcs in the following sequence nodes：

$$
C=v_{1} v_{\sigma(2)} v_{\sigma(3)} \cdots v_{\sigma(n)} v_{1},
$$

where $\sigma:\{2,3, \ldots, n\} \rightarrow\{2,3, \ldots, n\}$ is a permutation，i．e．，bijection．Note that $P=v_{\sigma(2)} v_{\sigma(3)} \cdots v_{\sigma(n)}$ defines a Hamiltonian path in the completed directed graph K_{n-1} ，where the nodes are given by $N \backslash\left\{v_{1}\right\}$ ． Thus，there is a one to one correspondence between the set S of indicator vectors of directed Hamiltonian cycles in K_{n} and the set S^{\prime} of indicator vectors of directed Hamiltonian paths in K_{n-1} ．In particular，the number of maximal affinely independent vectors are the same．Hence，both set dimensions are the same，i．e．， $\operatorname{dim}(S)=\operatorname{dim}\left(S^{\prime}\right)$ ．

So，it is enough to prove that the dimension of the set \widetilde{S} of indicator vectors of directed Hamiltonian paths on a complete directed network $(\widetilde{N}, \widetilde{A})$ is $|\widetilde{N}|(|\widetilde{N}|-1)-1$ ．Indeed，the cardinality of \widetilde{A} is $|\widetilde{N}|(|\widetilde{N}|-1)$ and for every indicator vector x of a Hamiltonian path we have that $\sum_{a \in \widetilde{A}} x_{a}=|\widetilde{N}|-1$ ．So，the following upper bound holds：

$$
\operatorname{dim}(\widetilde{S}) \leq|\tilde{N}|(|\tilde{N}|-1)-1
$$

Now we show that any implicit equality $\sum_{a \in \widetilde{A}} \alpha_{a} x_{a}=\beta$ for \widetilde{S} is a multiple of $\sum_{a \in \widetilde{A}} x_{a}=|\widetilde{N}|-1$ ．Indeed， Given two $\operatorname{arcs} a^{\prime}, a^{\prime \prime} \in \widetilde{A}$ let H be a directed Hamiltonian cycle containing a^{\prime} and $a^{\prime \prime}$ ．Then，$H \backslash\left\{a^{\prime}\right\}$ and $H \backslash\left\{a^{\prime \prime}\right\}$ are Hamiltonian paths that we represent by the indicator vectors x^{\prime} and $x^{\prime \prime}$ ，respectively．Then，

$$
\left.\begin{array}{rl}
\sum_{a \in \widetilde{A}} \alpha_{a} x_{a}^{\prime}=\beta \\
\sum_{a \in \widetilde{A}} \alpha_{a} x_{a}^{\prime \prime}=\beta
\end{array}\right\} ⿻ 丷 ⿻ 二 丨 䒑=\sum_{a \in \widetilde{A}} \alpha_{a}\left(x_{a}^{\prime}-x_{a}^{\prime \prime}\right)=\alpha_{a^{\prime}}(0-1)+\alpha_{a^{\prime \prime}}(1-0)
$$

Hence, there exists $c \in \mathbb{R}$ such that $\alpha_{a}=c$ for all $a \in \widetilde{A}$. In particular, we have that

$$
\beta=\sum_{a \in \widetilde{A}} \alpha_{a} x_{a}=c \cdot \sum_{a \in \widetilde{A}} x_{a} \quad \Longrightarrow \quad \beta=(|\widetilde{N}|-1) / c
$$

if c is non-zero. This concludes that any implicit equality $\sum_{a \in \widetilde{A}} \alpha_{a} x_{a}=\beta$ for \widetilde{S} is a multiple of $\sum_{a \in \widetilde{A}} x_{a}=$ $|\widetilde{N}|-1$. Therefore, $\operatorname{dim}(\widetilde{S})=|\widetilde{N}|(|\widetilde{N}|-1)-1$.
6. Let (N, E) be an undirected network. Recall that a node (or vertex) cover $V \subseteq N$ is a node set that is incident to every edge in E, and let $S \subseteq\{0,1\}^{N}$ be the set of indicator vectors of covers.
(a) Show that S is full-dimensional.

Answer: The vertex covers defined by $\left\{\mathbf{1}_{N}\right\} \cup\left\{\mathbf{1}_{N}-e_{i}: i \in N\right\}$ are $|N|+1$ affinely independent vectors. Thus, S is full-dimensional.
(b) Let $K \subseteq N$ be a clique in the network. Show that $\sum_{i \in K} x_{i} \geq|K|-1$ is valid for S. Give necessary and sufficient conditions for the inequality to be facet-defining, and justify these conditions constructively (i.e. by exhibiting n affinely independent points).

Answer: Suppose there is a vertex cover $x \in S$ such that $\sum_{i \in K} x_{i} \leq|K|-2$. Then, there are at least 2 nodes $j, k \in K$ that are not in the cover V induced by x. So, the edge $(j, k) \in E(K)$ is not covered by V, which is a contradiction. Thus, the inequality $\sum_{i \in K} x_{i} \geq|K|-1$ is valid.
The necessary and sufficient condition for the inequality $\sum_{i \in K} x_{i} \geq|K|-1$ to be facet-defining are:
(i) K is a maximal clique, that is, $K \cup\{v\}$ is not a clique, for all $v \in N \backslash K$.
(ii) For all $v \in N \backslash K$, there exists $k=k(v) \in K$ such that $V:=N \backslash\{k, v\}$ is a vertex cover.

First, we prove that conditions (i) and (ii) are sufficient. The face F defined as

$$
F=\operatorname{conv}(S) \cap\left\{x \in \mathbb{R}^{N}\left|\sum_{i \in K} x_{i}=|K|-1\right\}\right.
$$

has $|N|$ affinely independent vectors given by $\left\{\mathbf{1}_{N}-e_{j}: j \in K\right\} \cup\left\{\mathbf{1}_{N}-e_{v}-e_{k(v)}: v \in N \backslash K\right\}$. Thus, F is a facet.
Conversely, suppose that F is a facet. To show condition (i), assume by contradiction that K is not a maximal clique, i.e., there exists $v \in N \backslash K$ such that $K \cup\{v\}$ is a clique. Then, the inequality $\sum_{i \in K} x_{i} \geq$ $|K|-1$ is the sum between the valid inequalities $\sum_{i \in K \cup\{v\}} x_{i} \geq|K|$ and $-x_{v} \geq-1$. So, the valid inequality $\sum_{i \in K} x_{i} \geq|K|-1$ is redundant and cannot be facet-defining, which is a contradiction.
To show condition (ii), assume by contradiction that there exists $v \in N \backslash K$ such that the subset $V:=$ $N \backslash\{k, v\}$ is not a vertex cover for all $k \in K$. This implies that the face F is contained in the proper affine subspace $H=\left\{x \in \mathbb{R}^{N}\left|\sum_{i \in K} x_{i}=|K|-1, x_{v}=1\right\}\right.$. So, F is not a facet and this is a contradiction.
(c) Let $C \subseteq N$ be the node set of an odd cycle in the network. Show that $\sum_{i \in C} x_{i} \geq\lceil|C| / 2\rceil$ is valid for S. Suppose C has a chord, i.e. an additional edge connecting two nodes besides the edges in the cycle. Show that the inequality is not facet-defining. Suppose C is chordless; is the inequality always facet-defining?

Answer: Since $x \in S$ represents a vertex cover, we have that $x_{i}+x_{j} \geq 1$ for all $\{i, j\} \in E$. Then,

$$
|C| \leq \sum_{\substack{i, j \in C \\\{i, j\} \in E}}\left(x_{i}+x_{j}\right) \underbrace{=}_{\text {(cycle) }} 2 \sum_{i \in C} x_{i} \quad \Longrightarrow \quad\left\lceil\frac{|C|}{2}\right\rceil \leq \sum_{i \in C} x_{i}
$$

Thus, the inequality $\sum_{i \in C} x_{i} \geq\lceil|C| / 2\rceil$ is valid for S.
We show that such valid inequality is not facet-defining if C has a chord. Denote by F the face induced by the valid inequality $\sum_{i \in C} x_{i} \geq\lceil|C| / 2\rceil$. Then, we prove that
(i) There is an odd subcycle C^{\prime} and an even subcycle $C^{\prime \prime}$ formed by the chord in C such that

$$
\begin{equation*}
|C|=\left|C^{\prime}\right|+\left|C^{\prime \prime}\right|-2 \tag{1}
\end{equation*}
$$

Note that equation (1) implies that $\lceil|C| / 2\rceil=\left\lceil\left|C^{\prime}\right| / 2\right\rceil+\left|C^{\prime \prime}\right| / 2-1$.
(ii) The face F is contained into the affine subspace

$$
H:=\left\{\begin{array}{l|l}
x \in \mathbb{R}^{N} & \begin{array}{c}
\sum_{i \in C} x_{i}=\lceil|C| / 2\rceil, \\
\sum_{i \in C^{\prime}} x_{i}=\left\lceil\left|C^{\prime}\right| / 2\right\rceil
\end{array}
\end{array}\right\} .
$$

Thus, F is not a facet.
We first prove (i). Indeed, a chord on a cycle C creates two subcycles C^{\prime} and $C^{\prime \prime}$, where the union $C^{\prime} \cup C^{\prime \prime}$ is the cycle C and the intersection $C^{\prime} \cap C^{\prime \prime}$ is a set with the two nodes from the chord. If the number of nodes on both subcycles were even or odd then C would be an even cycle. Thus, there must exist an odd subcycle C^{\prime} and an even subcycle $C^{\prime \prime}$.

Now we prove (ii). For that we need to prove the inequality $\sum_{i \in C^{\prime \prime} \backslash\{u, v\}} x_{i} \geq\left|C^{\prime \prime}\right| / 2-1$ is valid for S, where u and v are the two nodes from the chord in C, i.e., $C^{\prime} \cap C^{\prime \prime}=\{u, v\}$. Indeed,

$$
\begin{aligned}
\left|C^{\prime \prime}\right|-3 \leq & \sum_{\substack{(i, j) \in E\left(C^{\prime \prime}\right) \\
i \neq u, v \text { and } j \neq u, v}} x_{i}+x_{j} \\
& \leq 2 \cdot\left(\sum_{i \in C^{\prime \prime} \backslash\{u, v\}} x_{i}\right) .
\end{aligned}
$$

This implies that $\sum_{i \in C^{\prime \prime} \backslash\{u, v\}} x_{i} \geq\left\lceil\left(\left|C^{\prime \prime}\right|-3\right) / 2\right\rceil=\left|C^{\prime \prime}\right| / 2-1$. Since C^{\prime} is an odd cycle we know the inequality $\sum_{i \in C^{\prime}} x_{i} \geq\left\lceil\left|C^{\prime}\right| / 2\right\rceil$ is valid for S. Then, for every solution $x \in S$ that belongs to the face F we have that

$$
\begin{aligned}
\left\lceil\frac{|C|}{2}\right\rceil & =\sum_{i \in C} x_{i}=\sum_{i \in C^{\prime}} x_{i}+\sum_{i \in C^{\prime \prime} \backslash\{u, v\}} x_{i} \\
& \geq \sum_{i \in C^{\prime}} x_{i}+\frac{\left|C^{\prime \prime}\right|}{2}-1
\end{aligned}
$$

This implies that $\sum_{i \in C^{\prime}} x_{i} \leq\lceil|C| / 2\rceil-\left|C^{\prime \prime}\right| / 2+1=\left\lceil\left|C^{\prime}\right| / 2\right\rceil$. Hence, $\sum_{i \in C^{\prime}} x_{i}=\left\lceil\left|C^{\prime}\right| / 2\right\rceil$. Therefore, F is contained into the affine space H.

We now show that even if C is chordless the inequality $\sum_{i \in C} x_{i} \geq\lceil|C| / 2\rceil$ may not be facet-defining. Let $G=(N, E)$ be the graph defined as $N=\{1,2,3,4\}$ and $E=\{(1,2),(1,3),(2,3),(1,4),(2,4),(3,4)\}$, see Figure 1. Let C be the chordless odd cycle $\{1,2,3\}$. Then, for every solution $x \in S$ in the face F it must also belong to the affine space $H:=\left\{x \in \mathbb{R}^{N}: \sum_{i=1}^{3} x_{i}=2, x_{4}=1\right\}$. Thus, F is not a facet.

Figure 1: Chordless odd cycle counter-example.

