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1. Let G = (N,A) be a directed graph, s, t ∈ N and let wa ∈ Q be arc weights. Recall that a directed path is a
sequence of arcs P = (a1, . . . , ak) in which al’s head is al+1’s tail, and in which no node repeats. Show that
the decision version of directed TSP polynomially reduces to asking if some directed s-t path in G has total
weight less than some number.

Answer: From G = (N,A), we create another directed graph G̃ = (Ñ , Ã) as follows:

• Duplicate each n ∈ N and denote by n′, n′′ ∈ Ñ .

• For every arc that arrives to n in G it does arrive to n′ in G̃, and every arc that departs from n in G it
does depart from n′′ in G̃. Those arcs have the same weight wa ∈ Q.

• Create an arc from n′ to n′′ with weight −M , where M = 2
∑
a∈A |wa|+ 1.

Fixed n′, n′′ ∈ Ñ , we prove that the TSP instance has a solution with total weight less than or equal to d if
and only if there exists a directed n′ − n′′ path in G̃ with total weight less than or equal to d−M(|N | − 1),
where |d| ≤

∑
a∈A |wa|.

Indeed, given a TSP solution with total weight less than or equal to d, the corresponding sequence of arcs
in G̃ can be completed to a directed n′−n′′ Hamiltonian path by including the transition arcs from a node m′

to m′′, for every m′,m′′ ∈ Ñ\{n′, n′′}. The total weight of such directed path is less than or equal to
d−M(|N | − 1) since there will be |N | − 1 arcs of weight −M in any directed n′ − n′′ Hamiltonian path.

Conversely, consider a directed n′ − n′′ path with total weight less than or equal to d −M(|N | − 1). We
have to prove that such directed path is Hamiltonian, that is, it traverses every pair of nodes (m′,m′′), where

m′,m′′ ∈ Ñ\{n′, n′′}. If it does not traverse some pair (m′,m′′) then −
∑
a∈A |wa| −M(|N | − 1) is a lower

bound on the total weight of the directed path. However, this lower bound implies the following inequality

d−M(|N | − 1) ≥ −
∑
a∈A
|wa| −M(|N | − 2) ⇐⇒ d+

∑
a∈A
|wa| ≥M

=⇒ 2
∑
a∈A
|wa| ≥M,

which is a contradiction. Therefore, a directed n′ − n′′ path with total weight d−M(|N | − 1) must traverse

all the nodes in G̃. Thus, the induced sequence of arcs in G defines a Hamiltonian cycle with total cost less
than or equal to d.

2. Recall the uncapacitated facility location problem. We have a set of candidate locations M = {1, . . . ,m},
and a set of customers N = {1, . . . , n}. Opening a facility at location i ∈ M incurs a fixed cost of fi ≥ 0,
and satisfying j’s demand from i incurs a cost of cij ≥ 0. Customers can only be served from i if the facility
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is open, but there is no other constraint (such as capacity) on what the facility can serve. Show that the
decision version is NP-complete using 3-SAT.

Answer: The construction of the Uncapacitated Facility Location (UFL) instance from 3-SAT is similar to
the Vertex Cover construction. Indeed, we define the same graph from the 3-SAT instance and interpret the
nodes as facilities and the edges as customers.

Indeed, consider an instance (U , C) of the 3-SAT such that U := {x1, . . . , xν} is the set of variables and
C := {C1, . . . , Ck} is the set of clauses. Then, construct a graph G = (N,E) in the following way:

• For each variable x ∈ U , create a pair of nodes [x] and [x]. We refer to [x] and [x] as variable nodes.
Connect [x] and [x] by an edge called variable edge.

• For each clause Ci ∈ C, create three nodes denoted by [Ci, li,1], [Ci, li,2], and [Ci, li,3], where li,1, li,2,
and li,3 are the three literals of Ci. We refer to those nodes as clause nodes. Connect all the three clause
nodes by an edge and form a clique of size 3. Those edges are called clause edges.

• Connect a variable node [u] to a clause node [Ci, lij ] if the literals lij and u are the same. Call this edge
a forcing edge.

A few remarks are instructive for this graph.

(i) The number of nodes is |N | = 2ν + 3k and the number of edges is |E| = 2ν + 6k.

(ii) A lower bound on the size of a vertex cover for G is ν+ 2k. This is because the pair of variable nodes [x]
and [x] form a clique of size 2 and the variable clauses [Ci, li,1], [Ci, li,2], and [Ci, li,3] form a clique of
size 3. Recall that to cover the edges of a clique of size r one needs at least r− 1 nodes from the clique.

We now define a UFL instance whose solution is essentially the minimum cardinality vertex cover. Indeed,
let fi = 1 for every node i ∈ N and let

cie =

{
0, if i ∈ e,
M, if i /∈ e,

for all i ∈ N and e ∈ E, where M := |N |+ 1. Then, our UFL instance is defined as

min
∑
i∈N

∑
e∈E ciezie +

∑
i∈N xi

s.t.
∑
i∈N zie = 1, ∀e ∈ E,∑
e∈E zie ≤ |E| · xi, ∀i ∈ N,

xi ∈ {0, 1}, zie ≥ 0, ∀i ∈ N, ∀e ∈ E.

Note that any vertex cover D ⊆ N induces a UFL solution with objective cost equal to |D|, and any feasible
solution (x, z) to the UFL instance such that the set {i ∈ N | xi = 1} is not a vertex cover has objective cost
greater than |N |. In particular, ν + 2k is a lower bound for the optimal value of the UFL instance

We now complete the proof by showing that the 3-SAT instance is satisfiable if and only if there exists a
feasible solution to the UFL instance with objective cost less than or equal to ν + 2k, or in other words, a
vertex cover of cardinality ν + 2k.

Indeed, suppose the 3-SAT is satisfiable and let A be an assignment that makes all the clauses true. Consider
the subset of nodes D ⊆ N defined as follows:

• The subset D contains all the variable nodes [u] such that the literal u is true by the assignment A.

• For each clause Ci, the subset D contains the other two clause nodes {[Ci, li,j ]}3j=1, j 6=r if some literal li,r
is true by the assignment A.

Note that D has cardinality ν + 2k. We prove that D is a vertex cover. Indeed, each variable edge induced
by the nodes [x] and [x] is covered by exactly one node in D. The clause edges in the clique defined by the
node clauses [Ci, li,1], [Ci, li,2], and [Ci, li,3] are covered by exactly 2 node in D. The forcing edge between a
variable node [u] and a clause node [Ci, u] is covered by [u] ∈ D if the literal u is assigned true in A or it is
covered by [Ci, u] otherwise. Therefore, D is a vertex cover of cardinality |D| = ν + 2k.
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Conversely, suppose that G has a vertex cover D ⊆ N of cardinality |D| = ν+ 2k. Then, exactly one variable
node among [x] and [x] belongs to D, for each variable x ∈ U , and exactly two node clauses among [Ci, li,1],
[Ci, li,2], and [Ci, li,3] belongs to D, for each clause Ci ∈ C. Thus, the literals of the selected variable nodes
can be made true and they induce a Boolean assignment A of the variables in U . For each clause Ci, the one
node clause [Ci, u] that does not belong to D is connected to the node variable [u] that must belong to D,
otherwise the corresponding forcing edge is not covered by D. This proves that the assignment satisfies all
the clauses and the 3-SAT is satisfiable.

3. Consider a knapsack feasible set S = x ∈ {0, 1}N :
∑
i∈N ai ≤ b, where we assume ai ≤ b for any i ∈ N ,

i.e. every item can individually fit in the knapsack, and thus S is full-dimensional. Consider a set C ⊆ N
satisfying

∑
i∈C ai > b.

(a) Prove that
∑
i∈C xi ≤ |C| − 1 is valid for S.

Answer: Because the knapsack coefficients ai’s are non-negative we have the inequality
∑
i∈C aixi ≤ b.

If a solution x satisfies
∑
i∈C xi ≥ |C| then xi equals 1 for every node i ∈ C but this violates the condition∑

i∈C aixi ≤ b. Thus, the inequality
∑
i∈C xi ≤ |C| − 1 is valid for S.

(b) Give necessary and sufficient conditions for the inequality to be facet-defining for conv(S).

Answer: We prove that the necessary and sufficient condition are

(i) The cover C is a minimal cover, that is,
∑
i∈C\{j} ai ≤ b, for all j ∈ C.

(ii) There exists k ∈ C such that
∑
i∈C\{k} ai + an ≤ b, for all n ∈ N\C.

Indeed, suppose that conditions (i) and (ii) hold. Denote by 1C ∈ {0, 1}N the vector with 1’s at the
coordinates i ∈ C, and 0’s otherwise. Then, {1C − ei : i ∈ C}∪{1C − ek + en : n ∈ N\C} are |N | affinely
independent vectors that belong to the face F induced by the valid inequality

∑
i∈C xi ≤ |C| − 1, that is,

F := conv(S) ∩

{
x ∈ RN

∣∣∣∣∣ ∑
i∈C

xi = |C| − 1

}
.

So, F has dimension greater than or equal to |N |−1. The constraint
∑
i∈C xi = |C|−1 is not an implicit

equality of conv(S) since conv(S) is full dimensional. This implies that the dimension of F is less than
or equal to |N | − 1. Thus, F has dimension |N | − 1 and it is a facet of conv(S).

Conversely, suppose that F is a facet of conv(S). Assume by contradiction that C is not a minimal
cover, i.e., there exists a proper subset C ′ ( C that is also a cover. This implies that the valid inequality∑
i∈C xi ≤ |C| − 1 can be obtained by the summation of the valid inequalities

∑
i∈C′ xi ≤ |C ′| − 1 and

xr ≥ 0 for all r ∈ C\C ′. So, the valid inequality
∑
i∈C xi ≤ |C|−1 is redundant, so it is not facet-defining

for conv(S), which is a contradiction. Thus, C must be a minimal face and condition (i) is necessary.

Let k ∈ C be such that
∑
i∈C\{k} ai is minimum. Assume by contradiction that there exists n ∈ N\C

such that
∑
i∈C\{k} ai + an > b. Then, F is contained into the affine space

H :=

{
x ∈ RN

∣∣∣∣∣ ∑
i∈C

xi = |C| − 1, xn = 0

}
.

Because H has dimension |N | − 2 we conclude that F is not a facet, which is a contradiction. Thus,
condition (ii) is also necessary.

4. Let (N,E) be an undirected, connected network, and let S ⊆ {0, 1}E be the set of indicator vectors of
spanning trees. For each question below, justify your answer with a proof.
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(a) Can S ever be full-dimensional?

Answer: No, because S is contained into the proper affine subspace H := {x ∈ RE |
∑
e∈E xe = |N |−1}.

(b) Suppose the network is itself a tree. What is dim(S)?

Answer: The dimension of S is dim(S) = 0 since the only feasible solution is the tree itself. In other
words, the cardinality of S is 1.

(c) Suppose the network is a cycle. What is dim(S)?

Answer: The dimension of S is dim(S) = |E| − 1. Indeed, dim(S) is less than or equal to |E| − 1, and
{1E − el | l ∈ E} are |E| affinely independent indicator vectors in S.

(d) What is dim(S) in the general case? Use your previous answers.

Answer: It was announced in Canvas by professor Toriello.

5. Let (N,A) be a complete directed network, and let S ⊆ {0, 1}A be the set of indicator vectors of directed
Hamiltonian cycles. What is dim(S)? Justify your answer.

Answer: The dimension of S is

dim(S) = (|N | − 1)(|N | − 2)− 1.

In order to prove this formula, we reduce the problem of a Hamiltonian cycle in a complete directed graph
with n nodes to the Hamiltonian path in a complete directed graph with n− 1 nodes.

Indeed, given any enumeration of the nodes N = {v1, . . . , vn}, a Hamiltonian cycle C in a complete directed
graph Kn is the indicator vector of the arcs in the following sequence nodes:

C = v1vσ(2)vσ(3) · · · vσ(n)v1,

where σ : {2, 3, . . . , n} → {2, 3, . . . , n} is a permutation, i.e., bijection. Note that P = vσ(2)vσ(3) · · · vσ(n)
defines a Hamiltonian path in the completed directed graph Kn−1, where the nodes are given by N\{v1}.
Thus, there is a one to one correspondence between the set S of indicator vectors of directed Hamiltonian
cycles in Kn and the set S′ of indicator vectors of directed Hamiltonian paths in Kn−1. In particular, the
number of maximal affinely independent vectors are the same. Hence, both set dimensions are the same, i.e.,
dim(S) = dim(S′).

So, it is enough to prove that the dimension of the set S̃ of indicator vectors of directed Hamiltonian paths
on a complete directed network (Ñ , Ã) is |Ñ |(|Ñ | − 1) − 1. Indeed, the cardinality of Ã is |Ñ |(|Ñ | − 1) and

for every indicator vector x of a Hamiltonian path we have that
∑
a∈Ã xa = |Ñ | − 1. So, the following upper

bound holds:
dim(S̃) ≤ |Ñ |(|Ñ | − 1)− 1.

Now we show that any implicit equality
∑
a∈Ã αaxa = β for S̃ is a multiple of

∑
a∈Ã xa = |Ñ | − 1. Indeed,

Given two arcs a′, a′′ ∈ Ã let H be a directed Hamiltonian cycle containing a′ and a′′. Then, H\{a′}
and H\{a′′} are Hamiltonian paths that we represent by the indicator vectors x′ and x′′, respectively. Then,∑

a∈Ã αax
′
a = β∑

a∈Ã αax
′′
a = β

}
=⇒ 0 =

∑
a∈Ã

αa(x′a − x′′a) = αa′(0− 1) + αa′′(1− 0)

=⇒ αa′ = αa′′ .
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Hence, there exists c ∈ R such that αa = c for all a ∈ Ã. In particular, we have that

β =
∑
a∈Ã

αaxa = c ·
∑
a∈Ã

xa =⇒ β = (|Ñ | − 1)/c,

if c is non-zero. This concludes that any implicit equality
∑
a∈Ã αaxa = β for S̃ is a multiple of

∑
a∈Ã xa =

|Ñ | − 1. Therefore, dim(S̃) = |Ñ |(|Ñ | − 1)− 1.

6. Let (N,E) be an undirected network. Recall that a node (or vertex) cover V ⊆ N is a node set that is incident
to every edge in E, and let S ⊆ {0, 1}N be the set of indicator vectors of covers.

(a) Show that S is full-dimensional.

Answer: The vertex covers defined by {1N}∪{1N − ei : i ∈ N} are |N |+ 1 affinely independent vectors.
Thus, S is full-dimensional.

(b) Let K ⊆ N be a clique in the network. Show that
∑
i∈K xi ≥ |K| − 1 is valid for S. Give necessary and

sufficient conditions for the inequality to be facet-defining, and justify these conditions constructively (i.e.
by exhibiting n affinely independent points).

Answer: Suppose there is a vertex cover x ∈ S such that
∑
i∈K xi ≤ |K| − 2. Then, there are at least 2

nodes j, k ∈ K that are not in the cover V induced by x. So, the edge (j, k) ∈ E(K) is not covered by V ,
which is a contradiction. Thus, the inequality

∑
i∈K xi ≥ |K| − 1 is valid.

The necessary and sufficient condition for the inequality
∑
i∈K xi ≥ |K| − 1 to be facet-defining are:

(i) K is a maximal clique, that is, K ∪ {v} is not a clique, for all v ∈ N\K.

(ii) For all v ∈ N\K, there exists k = k(v) ∈ K such that V := N\{k, v} is a vertex cover.

First, we prove that conditions (i) and (ii) are sufficient. The face F defined as

F = conv(S) ∩

{
x ∈ RN

∣∣∣∣∣ ∑
i∈K

xi = |K| − 1

}
.

has |N | affinely independent vectors given by {1N − ej : j ∈ K} ∪ {1N − ev − ek(v) : v ∈ N\K}. Thus, F
is a facet.

Conversely, suppose that F is a facet. To show condition (i), assume by contradiction that K is not a
maximal clique, i.e., there exists v ∈ N\K such that K ∪{v} is a clique. Then, the inequality

∑
i∈K xi ≥

|K| − 1 is the sum between the valid inequalities
∑
i∈K∪{v} xi ≥ |K| and −xv ≥ −1. So, the valid

inequality
∑
i∈K xi ≥ |K| − 1 is redundant and cannot be facet-defining, which is a contradiction.

To show condition (ii), assume by contradiction that there exists v ∈ N\K such that the subset V :=
N\{k, v} is not a vertex cover for all k ∈ K. This implies that the face F is contained in the proper affine
subspace H = {x ∈ RN |

∑
i∈K xi = |K| − 1, xv = 1}. So, F is not a facet and this is a contradiction.

(c) Let C ⊆ N be the node set of an odd cycle in the network. Show that
∑
i∈C xi ≥ d|C|/2e is valid for S.

Suppose C has a chord, i.e. an additional edge connecting two nodes besides the edges in the cycle. Show
that the inequality is not facet-defining. Suppose C is chordless; is the inequality always facet-defining?

Answer: Since x ∈ S represents a vertex cover, we have that xi + xj ≥ 1 for all {i, j} ∈ E. Then,

|C| ≤
∑
i,j∈C
{i,j}∈E

(xi + xj) =︸︷︷︸
(cycle)

2
∑
i∈C

xi =⇒
⌈
|C|
2

⌉
≤
∑
i∈C

xi.

Thus, the inequality
∑
i∈C xi ≥ d|C|/2e is valid for S.

We show that such valid inequality is not facet-defining if C has a chord. Denote by F the face induced
by the valid inequality

∑
i∈C xi ≥ d|C|/2e. Then, we prove that

5



(i) There is an odd subcycle C ′ and an even subcycle C ′′ formed by the chord in C such that

|C| = |C ′|+ |C ′′| − 2. (1)

Note that equation (1) implies that d|C|/2e = d|C ′|/2e+ |C ′′|/2− 1.

(ii) The face F is contained into the affine subspace

H :=

{
x ∈ RN

∣∣∣∣∣
∑
i∈C xi =

⌈
|C|/2

⌉
,∑

i∈C′ xi =
⌈
|C ′|/2

⌉ } .
Thus, F is not a facet.

We first prove (i). Indeed, a chord on a cycle C creates two subcycles C ′ and C ′′, where the union C ′∪C ′′
is the cycle C and the intersection C ′ ∩ C ′′ is a set with the two nodes from the chord. If the number of
nodes on both subcycles were even or odd then C would be an even cycle. Thus, there must exist an odd
subcycle C ′ and an even subcycle C ′′.

Now we prove (ii). For that we need to prove the inequality
∑
i∈C′′\{u,v} xi ≥ |C ′′|/2 − 1 is valid for S,

where u and v are the two nodes from the chord in C, i.e., C ′ ∩ C ′′ = {u, v}. Indeed,

|C ′′| − 3 ≤
∑

(i,j)∈E(C′′)
i 6=u,v and j 6=u,v

xi + xj

≤ 2 ·
( ∑
i∈C′′\{u,v}

xi

)
.

This implies that
∑
i∈C′′\{u,v} xi ≥ d(|C ′′| − 3)/2e = |C ′′|/2 − 1. Since C ′ is an odd cycle we know the

inequality
∑
i∈C′ xi ≥ d|C ′|/2e is valid for S. Then, for every solution x ∈ S that belongs to the face F

we have that ⌈
|C|
2

⌉
=
∑
i∈C

xi =
∑
i∈C′

xi +
∑

i∈C′′\{u,v}

xi

≥
∑
i∈C′

xi +
|C ′′|

2
− 1.

This implies that
∑
i∈C′ xi ≤ d|C|/2e − |C ′′|/2 + 1 = d|C ′|/2e. Hence,

∑
i∈C′ xi = d|C ′|/2e. Therefore, F

is contained into the affine space H.

We now show that even if C is chordless the inequality
∑
i∈C xi ≥ d|C|/2e may not be facet-defining.

Let G = (N,E) be the graph defined as N = {1, 2, 3, 4} and E = {(1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4)},
see Figure 1. Let C be the chordless odd cycle {1, 2, 3}. Then, for every solution x ∈ S in the face F it

must also belong to the affine space H := {x ∈ RN :
∑3
i=1 xi = 2, x4 = 1}. Thus, F is not a facet.
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Figure 1: Chordless odd cycle counter-example.
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