# Discrete Optimization <br> ISyE 6662 - Spring 2023 <br> Homework 2 

Instructor: Alejandro Toriello<br>TA: Filipe Cabral

February 6, 2023.

1. Consider the integer program

$$
\begin{array}{cl}
\inf & x_{1} \sqrt{3}-x_{2} \\
\text { s.t. } & x_{1} \sqrt{3}-x_{2} \geq 0 \\
& x_{1} \geq 1 \\
& x \in \mathbb{Z}^{2}
\end{array}
$$

Prove that no feasible solution has objective equal to zero, but that there are feasible solutions with objective value arbitrarily close to zero. Hint: Here is one possible strategy. Start with a feasible solution $\left(x_{1}, x_{2}\right)$, such as $(1,1)$. Show how you can construct a solution with a better objective value, where the new solution's values are functions of $x_{1}$ and $x_{2}$. Note that for any choice of $x_{1}$, the maximal choice of $x_{2}$ makes the objective of the corresponding solution less than 1 ; you may want to use this in your analysis.

Answer $_{1}$ : Denote by $\nu$ the optimal value of this problem. It follows from the first constraint that $\nu \geq 0$. Because $\left(x_{1}, x_{2}\right)=(1,1)$ is a feasible solution we also know that $\nu \leq \sqrt{3}-1<0.75$. We will prove that given any feasible solution $\left(x_{1}, x_{2}\right)$, we can always find another one with lower objective function.
Indeed, no solution $\left(x_{1}, x_{2}\right)$ can have objective value 0 since this would imply that $\sqrt{3}$ is a rational number, i.e., $\sqrt{3}=x_{2} / x_{1}$. Let $\epsilon=x_{1} \sqrt{3}-x_{2}$ be the objective value of a feasible solution $\left(x_{1}, x_{2}\right)$ such that $0<\epsilon<1$. This implies that $x_{2}$ is positive otherwise the objective value would be greater than 1 .
Then,

$$
\left.\begin{array}{l}
\epsilon^{2}=-2 x_{1} x_{2} \sqrt{3}+\left(3 x_{1}^{2}+x_{2}^{2}\right) \\
\epsilon=x_{1} \sqrt{3}-x_{2}
\end{array}\right\} \Longrightarrow \epsilon-\epsilon^{2}=\underbrace{\left(x_{1}+2 x_{1} x_{2}\right)}_{x_{1}^{\prime} \geq 1} \sqrt{3}-\underbrace{\left(3 x_{1}^{2}+x_{2}^{2}+x_{2}\right)}_{x_{2}^{\prime}}<\epsilon
$$

Note that $x_{1}^{\prime}:=x_{1}+2 x_{1} x_{2}$ and $x_{2}^{\prime}:=3 x_{1}^{2}+x_{2}^{2}+x_{2}$ define a feasible solution with lower objective cost. Therefore, there are feasible solutions with objective value arbitrarily close to zero.

Answer $_{2}$ : The function $f: \mathbb{Z}_{+} \rightarrow[0,1]$ defined as $f(d)=d \alpha-\lfloor d \alpha\rfloor$ is dense in $[0,1]$ if $\alpha$ is an irrational number. Thus, given any number $w \in[0,1]$ and $\epsilon>0$ there exist $d \in \mathbb{Z}_{+}$such that $|w-f(d)|<\epsilon$. The case $\alpha=\sqrt{3}$ and $w=0$ implies that the infimum of the integer program is 0 and there are feasible solutions with objective value arbitrarily close to zero.
2. Let $G=(N, E)$ be an undirected graph. We covered two formulations to model spanning trees:

$$
\begin{array}{ll}
\sum_{e \in E} x_{e}=|N|-1 & \sum_{e \in E} x_{e}=|N|-1 \\
\sum_{e \in E ; e \subseteq S} x_{e} \leq|S|-1, \quad \emptyset \neq S \subsetneq N & \sum_{e \in \delta(S)} x_{e} \geq 1, \quad \emptyset \neq S \subsetneq N \\
x \in\{0,1\}^{E} & x \in\{0,1\}^{E} .
\end{array}
$$

The left-hand formulation ensures the subgraph is acyclic, while the right-hand one ensures it is connected, and we showed that these properties are equivalent if the subgraph has $|N|-1$. Consider the linear relaxations of the two formulations, where we replace the binary restrictions with $x \in[0,1]^{E}$. Show that the left-hand relaxation is stronger than the right-hand one: That is, show that the left-hand polyhedron is contained in the right-hand one, and show that the inclusion can be strict for some graph.

Answer: Let $x$ be a feasible solution of the left-hand side linear relaxation. Given any subset $S \subseteq N$, the set edges $E$ can be decomposed into a disjoint union of edges within $S, E(S)$, edges within $S^{\complement}, E\left(S^{\complement}\right)$, and edges across $S$ and $S^{\complement}, \delta(S)$, that is,

$$
E=E(S) \dot{\cup} E\left(S^{\complement}\right) \dot{\cup} \delta(S)
$$

Note here that $E(S)=\{e \in E \mid e \subseteq S\}$. Thus,

$$
\left.\begin{array}{rl}
|N|-1 & =\sum_{e \in E(S)} x_{e}+\sum_{e \in E\left(S^{\mathrm{C}}\right)} x_{e}+\sum_{e \in \delta(S)} x_{e} \\
& \leq(|S|-1)+\left(\left|S^{\mathrm{C}}\right|-1\right)+\sum_{e \in \delta(S)} x_{e} \\
& =|N|-2+\sum_{e \in \delta(S)} x_{e}
\end{array}\right\} \Longrightarrow 1 \leq \sum_{e \in \delta(S)} x_{e}
$$

For the strict inclusion, consider the feasible solution defined as the weights of the following graph:


Figure 1: Strict inclusion graph example.
The solution satisfies the cut set constraint $\sum_{e \in \delta(S)} x_{e} \geq 1$ for every subset $S$ such that $\emptyset \neq S \subsetneq\{1, \ldots, 5\}$. However, the subtour elimination constraint is violated for $S=\{1,2,5\}$.
3. We've covered a couple of formulations for the TSP; here is another idea. For node set $N=\{1, \ldots, n\}$, consider a decision variable $x_{i k} \in\{0,1\}$ that equals one precisely when node $i$ is in the tour's $k$-th position and is zero otherwise, for $k=1, \ldots, n$. Give a linear integer programming formulation that uses these decision variables. You may need to also define additional decision variables. Prove your formulation's correctness.

Answer: We create a constraint that assigns an order $k$ for each node $i, \sum_{k=1}^{n} x_{i k}=1$, for all $i$, and a constraint that assigns a node $i$ to each order $k, \sum_{i \in N} x_{i k}=1$, for all $k$.
The TSP unit costs are for the tour's edges, so we need a variable to track that. Let $y_{i j}^{k} \in\{0,1\}$ be the binary variable that equal to 1 if the tour moves from node $i$ to node $j$ in the $k$-th position. We need to impose the constraint $y_{i j}^{k}=x_{j k} \cdot x_{i, k-1}$ since we can only traverse the edge $i j$ if node $i$ is in the $(k-1)$-th position and node $j$ is in the $k$-th position. We use the standard linearization to convert the product of binary variables into linear constraints:

$$
x_{i, k-1} \geq y_{i j}^{k}, \quad x_{j k} \geq y_{i j}^{k}, \quad y_{i j}^{k} \geq x_{i, k-1}+x_{j k}-1
$$

Below is the complete formulation of the TSP:

$$
\begin{array}{rlll}
\min _{x, y} & \sum_{k=1}^{n} \sum_{i, j \in N} w_{i j} y_{i j}^{k} & & \\
\text { s.t. } & \sum_{k=1}^{n} x_{i k}=1, & i \in N & \text { (Exact one order for each node) } \\
& \sum_{i \in N} x_{i k}=1, & k=1, \ldots, n, & \text { (Exact one node for each order) } \\
& x_{i n} \geq y_{i j}^{1}, \quad x_{j 1} \geq y_{i j}^{1} & i, j \in N ; i \neq j, & \text { (Move from } i \text { to } j \text { in 1st postion - UB) } \\
& y_{i j}^{1} \geq x_{i n}+x_{j 1}-1, & i, j \in N ; i \neq j, & \text { (Move from } i \text { to } j \text { in 1st postion - LB) } \\
& x_{i, k-1} \geq y_{i j}^{k}, \quad x_{j, k} \geq y_{i j}^{k} & k=2, \ldots, n, \quad i, j \in N ; i \neq j, & \text { (Move from } i \text { to } j \text { in k-th postion - UB) } \\
& y_{i j}^{k} \geq x_{i, k-1}+x_{j k}-1, & k=2, \ldots, n, \quad i, j \in N ; i \neq j, & \text { (Move from } i \text { to } j \text { in k-th postion - LB) } \\
& x_{i k} \in\{0,1\}, y_{i j}^{k} \in\{0,1\} & k=1, \ldots, n, \quad i, j \in N ; i \neq j . &
\end{array}
$$

4. You are scheduling production runs in a plant over a planning horizon of $T$ periods. In each period $t=1, \ldots, T$, you have the following data:

- $d_{t} \in \mathbb{Z}_{+}$: Units of demand that must be satisfied in period $t$.
- $c_{t} \in \mathbb{R}_{+}$: Variable, per-unit production cost for period $t$.
- $f_{t} \in \mathbb{R}_{+}$: Fixed production setup cost that is paid once if any production occurs in $t$.
- $h_{t} \in \mathbb{R}_{+}$: Per-unit holding cost for units held in inventory at the end of period $t$.

Your objective is to minimize total cost over the planning horizon while meeting demand.
a) Consider the formulation

$$
\begin{array}{rll}
\min _{q, s, z \geq 0} & \sum_{t=1}^{T} f_{t} z_{t}+c_{t} q_{t}+h_{t} s_{t} & \\
\text { s.t. } & q_{t}+s_{t-1}-s_{t}=d_{t}, & t=1, \ldots, T \\
& q_{t} \leq z_{t} \sum_{\tau=t}^{T} d_{\tau}, & t=1, \ldots, T \\
& s_{0}=0 ; \quad z \in\{0,1\}^{T} . &
\end{array}
$$

The variables $q_{t}$ represent production quantity in $t$, $s_{t}$ represents inventory at the end of $t$, and $z_{t}$ indicates if production occurred in $t$. Prove its correctness.

Answer: The correctness of the inventory balance equation is straightforward. The only non-trivial question is $\sum_{\tau=t}^{T} d_{\tau}$ is a valid lower bound for the production variable $q_{t}$. Indeed, if we sum the inventory balance equation $q_{\tau}+s_{\tau-1}-s_{\tau}=d_{\tau}$ for $\tau$ from $t$ to $T$ we get the following relations:

$$
\sum_{\tau=t}^{T} d_{\tau}=\sum_{\tau=t}^{t} q_{\tau}+s_{t-1}-s_{T} \geq q_{t}-s_{T}
$$

where the last inequality follows from the non-negativity constraints. Because the inventory cost is nonnegative and the planning horizon ends at $T$, there exists an optimal solution with final inventory $s_{T}$ equal to 0 . Thus, $\sum_{\tau=t}^{T} d_{\tau}$ is a valid upper bound for $q_{t}$.
b) Give a different formulation in which you do not use inventory variables. Instead, use variables $q_{t, t^{\prime}}$ to indicate the amount of production in period $t$ used to meet demand in period $t^{\prime} \geq t$. Prove your formulation's correctness.

Answer: Because the initial inventory $s_{0}$ is 0 and the final inventory $s_{T}$ must be 0 at an optimal solution we consider the constraint $q_{t}=\sum_{\tau=t}^{T} q_{t \tau}$. This represents production at time $t$ that will be sent to a future time period $\tau$. Then, the demand $d_{t}$ must be met by the sum of production quantities of previous time periods that were sent to $t$, i.e., $\sum_{\tau=1}^{t} q_{\tau t}=d_{t}$. The inventory cost to hold the production
quantity $q_{t \tau}$ from time $t$ to $\tau$ is $\sum_{l=t}^{\tau-1} h_{l}$. Below is the complete formulation:

$$
\begin{array}{rlll}
\min _{q, z \geq 0} & \sum_{t=1}^{T}\left(f_{t} z_{t}+c_{t} q_{t}+\sum_{\tau=t+1}^{T} q_{t \tau} \cdot \sum_{l=t}^{\tau-1} h_{l}\right) & & \\
\text { s.t. } & \sum_{\tau=1}^{t} q_{\tau t}=d_{t}, & t=1, \ldots, T, & \text { (Demand constraint) } \\
& q_{t}=\sum_{\tau=t}^{T} q_{t \tau}, & t=1, \ldots, T, & \text { (Production partition) } \\
& q_{t} \leq z_{t} \sum_{\tau=t}^{T} d_{\tau}, & t=1, \ldots, T, & \text { (Production setup) } \\
& q_{t} \geq 0, \quad q_{t \tau} \geq 0, \quad z_{t} \in\{0,1\}, & t=1, \ldots, T, \quad \tau=t, \ldots, T . &
\end{array}
$$

5. In an undirected graph, a clique is a set of nodes in which every pair is connected by an edge. The CLIQUE problem in a graph $G$ asks if there is a clique in $G$ of size $k$ or greater. Give a polynomial reduction of 3-SAT to CLIQUE.

Answer: Recall that every 3-SAT instance is defined by a set of clauses $C=\left\{c_{1}, \ldots, c_{n}\right\}$ on a finite set of variables $U$. Each clause $c_{i}$ is a set containing 3 literals, that is, $c_{i}=\left\{l_{i 1}, l_{i 2}, l_{i 3}\right\}$, and each literal $l_{i j}$ is given by a Boolean variable $x$ or its negation $\neg x$, where $x \in U$.
A clause $c_{i}$ represents the logical disjunction (or) $l_{i 1} \vee l_{i 2} \vee l_{i 3}$, which can be true or false depending on the assignment of the Boolean variables. The 3-SAT is the problem of determining whether or not there is an assignment of the Boolean variables $x \in U$ that satisfies all the clauses $c_{1}, \ldots, c_{n}$ at once, i.e., that satisfies the logical conjunction of clauses $c_{1} \wedge \cdots \wedge c_{n}$. We say that the 3-SAT is satisfiable when the answer to this question is yes.
To create a polynomial reduction of 3-SAT to CLIQUE we need to construct a graph that represents a 3-SAT instance. Indeed, let a node be the pair $\left(c_{i}, l_{i j}\right)$, where $c_{i}$ is a clause and $l_{i j}$ is a literal that belongs $c_{i}$ :

$$
N=\left\{\left(c_{i}, l_{i j}\right) \mid i=1, \ldots, n, j=1,2,3\right\}
$$

We construct an edge between nodes $\left(c_{i}, l_{i j}\right)$ and $\left(c_{r}, l_{r s}\right)$ if the clauses $c_{i}$ and $c_{r}$ are different and the literals $l_{i j}$ and $l_{r s}$ are not the negation of each other:

$$
E=\left\{\left\{\left(c_{i}, l_{i j}\right),\left(c_{r}, l_{r s}\right)\right\} \mid c_{i} \neq c_{r}, l_{i j} \neq \neg l_{r s}, \forall i, j, r, s\right\} .
$$

It is straightforward to see that this reduction is polynomial in the instance of the 3-SAT. The intuition here is that if two nodes $\left(c_{i}, l_{i j}\right)$ and $\left(c_{r}, l_{r s}\right)$ are connected by an edge then both clauses $c_{i}$ and $c_{r}$ are satisfiable if we make both literals $l_{i j}$ and $l_{r s}$ equal to true.
Indeed, we prove that a 3-SAT instance $(U, C)$ is satisfiable if, and only if, the graph $G=(N, E)$ has a clique of size $n=|C|$. If the 3-SAT instance $(U, C)$ is satisfiable then there is an assignment of the Boolean variables such that some literal $l_{i j}$ of each clause $c_{i}$ is true. The set $K$ of those pairs ( $c_{i}, l_{i j}$ ) define a subset of nodes of cardinality $n$. Note that $K$ is a clique since two different nodes $\left(c_{i}, l_{i j}\right)$ and $\left(c_{r}, l_{r s}\right)$ in $K$ have true literals $l_{i j}$ and $l_{r s}$, which implies that $l_{i j}$ cannot be the negation of $l_{r s}$.
Conversely, suppose the graph $G$ has a clique $K$ of size $n$. For any two nodes $\left(c_{i}, l_{i j}\right)$ and $\left(c_{r}, l_{r s}\right)$ in $K$, the literals $l_{i j}$ and $l_{r s}$ are the same or they are associated to different variables. In either case, the 3 -SAT instance can be satisfied by assigning true to the literal $l_{i j}$ of each clause $c_{i}$, where $\left(c_{i}, l_{i j}\right) \in K$.
6. Problem A: Let $a_{i} \in \mathbb{N}$ for $i \in N=\{1, \ldots, n\}$, let $b \in \mathbb{N}$. Is there a set $S \subseteq N$ satisfying $\sum_{i \in S} a_{i}=b$ ? Problem B: Let $\alpha_{i} \in \mathbb{Q}$ for $i \in N$. Is there is some $S \subseteq N$ with $f\left(\sum_{i \in S} \alpha_{i}\right) \geq \beta$, where $f(x)=\sqrt{x}-r x$ for some arbitrary $r>0$.
a) Show that 3-SAT polynomially reduces to A. Hint: Use very large numbers, where each digit encodes a variable or clause.

Answer: Consider an instance of the 3-SAT problem $(U, C)$ such that $U:=\left\{x_{1}, \ldots, x_{k}\right\}$ is the set of variables and $C:=\left\{c_{1}, \ldots, c_{n}\right\}$ is the set of clauses. For each variable $x_{i} \in U$, define the numbers

$$
y_{i}=10^{i+n}+\sum_{\substack{l=1 ; \\ x_{i} \in c_{l}}}^{n} 10^{l}, \quad \text { and } \quad z_{i}=10^{i+n}+\sum_{\substack{l=1 ; \\ \neg x_{i} \in c_{l}}}^{n} 10^{l}
$$

and for each clause $c_{j}$, define the numbers

$$
t_{j}=10^{j} \quad \text { and } \quad s_{j}=10^{j}
$$

The target number is defined as

$$
\begin{aligned}
b & =\sum_{i=1}^{k} 10^{i+n}+3 \cdot \sum_{l=1}^{n} 10^{l} \\
& =\underbrace{11 \cdots 1}_{k} \underbrace{33 \cdots 3}_{n} .
\end{aligned}
$$

Suppose that the 3-SAT instance is satisfiable, i.e., there is an assignment of the Boolean variables $x_{1}, \ldots, x_{k}$ that satisfies the logical conjunction $c_{1} \wedge \cdots \wedge c_{n}$. To define a solution to the subset sum, select $y_{i}$ such that $x_{i}$ is true otherwise select $z_{i}$ :

$$
\sum_{\substack{i=1 ; \\ x_{i}=\text { true }}}^{n} y_{i}+\sum_{\substack{i=1 ; \\ x_{i}=\text { false }}}^{n} z_{i}=\underbrace{11 \cdots 1}_{k} \underbrace{d_{n} d_{n-1} \cdots d_{1}}_{n} .
$$

Because this Boolean assignment satisfies the logical conjunction $c_{1} \wedge \cdots \wedge c_{n}$ we have that each $d_{l}$ is greater than or equal to 1 , for all $l=1, \ldots, n$. Thus, we can sum the variables $t_{j}$ and $s_{j}$ to add up $d_{j}$ to 3 and meet the target $b$.

Conversely, suppose that our instance of the subset sum problem has a solution. Because each of the variables $t_{j}$ and $s_{j}$ for the $j$-th digit can sum only up to 2 there must exist a variable $y_{i}$ or $z_{i}$ that completes the sum up to 3 . This implies that either $x_{i}$ or $\neg x_{i}$ belongs to the class $c_{j}$, for some $i \in\{1, \ldots, n\}$. Because the last $k$ digits of $b$ are all 1's then either $x_{i}$ or $\neg x_{i}$ is in the subset sum representation but not both. Otherwise the $(i+n)$-th digit would be 2 , instead of 1 . Therefore, the 3 -SAT instance is satisfiable.
b) Show that A polynomially reduces to B.

Answer: The idea of this question is to note that $f$ is a strictly concave function, therefore has a unique maximizer. We can use the explicit formula for the maximizer $x^{*}$ of $f$ and $\nu=f\left(x^{*}\right)$ to define $\alpha_{i} \in \mathbb{Q}$ and $\beta$, respectively.
Indeed, the first and second derivative of $f$ is given by:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2 \sqrt{x}}-r \\
f^{\prime \prime}(x) & =-\frac{1}{4 x^{3 / 2}}<0
\end{aligned}
$$

for every point $x>0$. Because the second derivative is negative for every $x>0$, we conclude that $f$ is strictly concave. From the first derivative, we have that the maximizer $x^{*}$ is such that $1 /\left(2 \sqrt{x^{*}}\right)-r=0$, that is, $x^{*}=1 / 4 r^{2}$. So, the maximum is $\nu=f\left(x^{*}\right)=1 / 4 r$.
We scale $b$ by a constant $c$ to make it the maximizer of $f$ :

$$
c b=\frac{1}{4 r^{2}} \quad \Longrightarrow \quad c=\frac{1}{4 r^{2} b}
$$

By scaling $\sum_{i \in S} a_{i}$ by $c$ as well, we are able to define our instance for problem B :

$$
\alpha_{i}=c \cdot a_{i}, \quad \beta=\frac{1}{4 r}
$$

for every $i \in N$. Note that the reduction is polynomial in the size of the instance of problem A.
Suppose the answer to problem B is yes, i.e., there exists some $S \subseteq N$ with $f\left(\sum_{i \in S} \alpha_{i}\right) \geq \beta$. Then, $\sum_{i \in S} \alpha_{i}$ is the maximizer of $f$ which is equal to $1 / 4 r^{2}$ :

$$
\frac{1}{4 r^{2}}=\sum_{i \in S} \alpha_{i}=\frac{\sum_{i \in S} a_{i}}{4 r^{2} b} \quad \Longrightarrow \quad b=\sum_{i \in S} a_{i}
$$

So, the answer to problem A is also yes. Conversely, suppose the answer to problem A is yes, i.e., there exists a set $S \subseteq N$ such that $\sum_{i \in S} a_{i}=b$. Then,

$$
f\left(\sum_{i \in S} \alpha_{i}\right)=f(c \cdot b)=\frac{1}{4 r}=\beta
$$

Thus, the answer to problem B is also yes.

