Discrete Optimization ISyE 6662 - Spring 2023 Homework 1

Instructor: Alejandro Toriello TA: Filipe Cabral

January 23, 2023.

1. Let $A \in Z^{n \times n}$ be a square integer matrix, and suppose the largest absolute value of any entry in A is a. Prove that $|\det(A)| \leq (an)^n$.

Answer: We know that the determinant function is given by $\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1,\sigma(1)} \cdots a_{n,\sigma(n)}$, where S_n is the set of all permutations $\sigma : \{1, \ldots, n\} \to \{1, \ldots, n\}$ and $\operatorname{sgn}(\sigma) \in \{-1, 1\}$ is the sign of the permutation σ . Thus, the following inequalities hold:

$$|\det(A)| \le \sum_{\sigma \in S_n} |a_{1,\sigma(1)} \cdots a_{n,\sigma(n)}| \le \sum_{\sigma \in S_n} a^n \le n! a^n \le n^n a^n,$$

where the first follows from the triangular inequality, the second is because a is the largest absolute entry of A, and the third is because the number of all possible permutations of n objects is n!.

- 2. Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ be a non-empty polyhedron. Prove the following:
 - a) P contains a line if and only if Ax = 0 has a non-zero solution.

Answer: Suppose that P contains a line, i.e., there exists $d \in \mathbb{R}^n \setminus \{0\}$ and $x \in P$ such that x + td belongs to P for all $t \in \mathbb{R}$. Suppose that $(Ad)_i \neq 0$ for some $i = 1, \ldots, m$. Let $t_\alpha = \alpha \cdot (Ad)_i$ and note that

$$b_i \ge (Ax + t_\alpha Ad)_i = (Ax)_i + \alpha \cdot (Ad)_i^2, \quad \forall \alpha > 0.$$

However, this is a contradiction since $(Ax)_i + \alpha \cdot (Ad)_i^2$ tends to $+\infty$ as α goes to $+\infty$. Thus, d is a non-zero solution to Ax = 0.

Conversely, suppose that Ax = 0 has a non-zero solution $d \in \mathbb{R}^n \setminus \{0\}$. Then, x + td belongs to P for every $x \in P$ and $t \in \mathbb{R}$ because

$$A(x+td) = Ax + t \cdot \underbrace{Ad}_{=0} = Ax \le b.$$

b) P is unbounded if and only if $Ax \leq 0$ has a non-zero solution.

Answer: Suppose that P is unbounded, that is, there exists $d \in \mathbb{R}^n \setminus \{0\}$ and $x \in P$ such that x + td belongs to P for all $t \in \mathbb{R}_+$. Here the scalar t is *non-negative* instead of any real number. The remaining argument is similar.

Suppose that $(Ad)_i > 0$ for some i = 1, ..., m. Let $t_{\alpha} = \alpha \cdot (Ad)_i$ and note that

$$b_i \ge (Ax + t_\alpha Ad)_i = (Ax)_i + \alpha \cdot (Ad)_i^2, \quad \forall \alpha > 0.$$

However, this is a contradiction since $(Ax)_i + \alpha \cdot (Ad)_i^2$ tends to $+\infty$ as α goes to $+\infty$. Thus, d is a non-zero solution to $Ax \leq 0$.

Conversely, suppose that $Ax \leq 0$ has a non-zero solution $d \in \mathbb{R}^n \setminus \{0\}$. Then, x + td belongs to P for every $x \in P$ and $t \in \mathbb{R}_+$.

3. Recall that the *convex hull* of a set of points S is the set of points that can be obtained as a convex combination of (finitely points in S, or equivalently, it is the smallest convex set containing S. Let $S = \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i^2 \le \rho^2\}$ for some $\rho \ge 0$. Is $\operatorname{conv}(S \cap \mathbb{Z}^n)$ a polyhedron? What about $\operatorname{conv}(S \cap (\mathbb{R} \times \mathbb{Z}^{n-1}))$, $\operatorname{conv}(S \cap (\mathbb{R}^2 \times \mathbb{Z}^{n-2}))$, and so forth? Justify your answer.

Answer: We know that a convex combination of union of polytopes is also a polytope (it is just the convex combination of the union of extreme points). Then, we have the following cases:

- (i) $S \cap \mathbb{Z}^n$ is a finite set, so $\operatorname{conv}(S \cap \mathbb{Z}^n)$ is a polytope.
- (ii) $S \cap (\mathbb{R} \times Z^{n-1})$ is a finite union of line segments, so $\operatorname{conv}(S \cap (\mathbb{R} \times Z^{n-1}))$ is also a polytope.
- (iii) $S \cap (\mathbb{R}^k \times Z^{n-k})$ is a finite union of k-dimensional balls for $2 \le k \le n$, which implies that $\operatorname{conv}(S \cap (\mathbb{R}^k \times Z^{n-k}))$ Z^{n-k})) is not a polytope. For instance, consider $\rho = 1, n = 3$ and k = 2. Then,

$$S \cap (\mathbb{R}^2 \times \mathbb{Z}) = \{(0, 0, -1)\} \cup (C_2 \times \{0\}) \cup \{(0, 0, 0)\},\$$

where C_2 is the unit circle given by $C_2 = \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 \leq 1\}$. Thus, the convex set $\operatorname{conv}(S \cap (\mathbb{R}^2 \times \mathbb{Z}))$ is given by the union of two cones connected by the circular base, i.e.,

$$\operatorname{conv}(S \cap (\mathbb{R}^2 \times \mathbb{Z})) = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + |x_3| \le 1 \}.$$

- 4. Let $P \subseteq \mathbb{R}^n$ be a polytope given as the convex hull of a set of points, $P = \operatorname{conv}\{x_1, \ldots, x_m\}$. Let $c_1, \ldots, c_k \in \mathbb{R}^n$ be a set of objective vectors.
 - a) Write a linear program that solves $\min_{x \in P} \max_{l=1,\dots,k} c^l x$.

 $x \in$

Answer: For a fixed $x \in P$, the term $\max_{l=1,\dots,k} c^l x$ can be described as the maximum of cx over all the objective costs c subject to $c \in \operatorname{conv}\{c^1, \ldots, c^k\}$. We conclude by taking the dual of this problem and grouping the minimization problems. Indeed,

$$\min_{x \in P} \max_{l=1,...,k} c^{t} x = \min_{x \in P} \max_{\lambda,c} cx$$
s.t.
$$\sum_{l=1}^{k} \lambda_{l} c^{l} = c,$$

$$\sum_{l=1}^{k} \lambda_{l} = 1,$$

$$\lambda \geq 0, \ c \in \mathbb{R}^{n},$$

$$\stackrel{\text{(dual)}}{=} \min_{x \in P} \min_{\gamma, \pi} \gamma$$
s.t.
$$c^{l} \pi + \gamma \geq 0, \qquad l = 1, \dots, k,$$

$$-\pi = x,$$

$$\pi \in \mathbb{R}^{n}, \ \gamma \in \mathbb{R},$$

$$= \min_{\alpha, x, \gamma} \gamma$$
s.t.
$$-c^{l} x + \gamma \geq 0, \qquad l = 1, \dots, k,$$

$$x = \sum_{i=1}^{m} \alpha_{i} x_{i},$$

$$\sum_{i=1}^{m} \alpha_{i} = 1,$$

$$x \in \mathbb{R}^{n}, \ \gamma \in \mathbb{R}, \ \alpha \geq 0.$$

b) Explain how you can efficiently solve $\max_{x \in P} \max_{l=1,\ldots,k} c^l x$.

Answer: Note that the following identities hold:

$$\max_{x \in P} \max_{l=1,...,k} c^{l} x = \max_{l=1,...,k} \max_{x \in P} c^{l} x = \max_{\substack{i=1,...,m,\\l=1,...,k}} c^{l} x_{i}.$$

Thus, we can find the largest inner product $c^l x_i$ among l = 1, ..., k and i = 1, ..., m.

Now suppose P is given by a set of linear inequalities, $P = \{x \in \mathbb{R}^n : Ax \le b\}.$

c) Repeat question (a).

Answer: A similar idea applies to this question.

$$\min_{x \in P} \max_{l=1,\dots,k} c^{t} x = \min_{x \in P} \min_{\gamma} \quad \gamma \\ \text{s.t.} \quad \gamma \ge c^{l} x, \quad l = 1,\dots,k, \\ \gamma \in \mathbb{R}, \\ = \min_{x \in P} \min_{\gamma} \quad \gamma \\ \text{s.t.} \quad \gamma \ge c^{l} x, \qquad l = 1,\dots,k, \\ Ax \le b, \\ x \in \mathbb{R}^{n}, \quad \gamma \in \mathbb{R}.$$

d) Write a mixed-integer linear program that solves $\max_{x \in P} \max_{l=1,\dots,k} c^l x$.

Answer: Roughly speaking, we create k copies of the polytope P and use a binary variable $z_l \in \{0, 1\}$ to indicate the copy we refer. Indeed,

$$\max_{x \in P} \max_{l=1,...,k} c^{l} x = \max_{x,x_{l},z_{l}} \sum_{l=1}^{k} c^{l} x_{l}$$

s.t. $Ax_{l} \leq z_{l}b,$ $l = 1,...,k,$
 $\sum_{l=1}^{k} z_{l} = 1,$
 $x, x_{l} \in \mathbb{R}^{n}, \ z \in \{0,1\}^{k}.$

Because P is a polytope (bounded polyhedron) the only solution to $Ax \leq 0$ is the zero vector. Thus, x_l belongs to P if z_l is 1 and x_l is the zero vector if z_l is 0.

- 5. Consider an undirected graph (N, E) with associated edge weights $w \in \mathbb{R}^{E}$, each of which may be positive, negative or zero. For each of the following problems, give an integer programming formulation and prove its correctness.
 - a) For a given subset of nodes $S \subseteq N$, find the maximum-weight subtree of the graph that contains S and may or may not contain other nodes.

Answer: Let $x_e \in \{0, 1\}$ be the variable that indicates with 1 if the edge $e \in E$ belongs to our subgraph and 0 otherwise. Let y_v be the indicator variable of a node $v \in N$ of our subgraph. First, we require that every node in S belongs to the subgraph, i.e., $y_v = 1$ for every $v \in S$. Also, an edge belongs to the subgraph if both endpoint nodes belong to it, that is, $x_{uv} \leq y_u$ and $x_{uv} \leq y_v$, for all $u, v \in V$ such that $uv \in E$.

To enforce an acyclic subgraph we consider the cycle elimination constraint $\sum_{e \in E(U)} \leq |U| - 1$, for all $U \subset N$ such that $U \neq \emptyset$ and $U \neq N$. In particular, the resulting subgraph is a forest (union of trees). Recall that a forest with n nodes and m connected components have n - m edges. So, we include the constraint $\sum_{e \in E} x_e = \sum_{v \in N} y_v - 1$ to enforce a subtree, that is, only one connected component. Below

we have the complete formulation:

$$\begin{split} \max_{x,y} & \sum_{e \in E} w_e x_e \\ \text{s.t.} & \sum_{e \in E(U)} \leq |U| - 1, \qquad U \subset N : U \neq \emptyset, N, \\ & \sum_{e \in E} x_e = \sum_{v \in N} y_v - 1, \\ & x_{uv} \leq y_u, \quad x_{uv} \leq y_v, \qquad u, v \in V; \ uv \in E \\ & y_v = 1, \qquad v \in S, \\ & x_e \in \{0,1\}, \ e \in E. \end{split}$$

b) For a given subset $S \subseteq N$, find the maximum-weight subgraph in which nodes in S have odd degree and nodes in $N \setminus S$ have even degree (including possibly zero).

Answer: We create an auxiliary variable $z_v \in \mathbb{Z}_+$ for each vertex $v \in N$ to represent even and odd degrees, see the formulation below:

$$\begin{aligned} \max_{x} \quad & \sum_{e \in E} w_e x_e \\ \text{s.t.} \quad & \sum_{e \in \delta(v)} x_e = 2z_v + 1, \quad v \in S, \\ & \sum_{e \in \delta(v)} x_e = 2z_v, \qquad v \in N \backslash S, \\ & x_e \in \{0, 1\}, \ z_v \in \mathbb{Z}_+, \quad v \in N, \ e \in E \end{aligned}$$

c) For a positive integer vector $b \in \mathbb{Z}_+^N$, find the maximum-weight graph in which node $i \in N$ has degree b_i .

Answer: This formulation is similar to the one in (b) but without the auxiliary variable:

$$\begin{aligned} \max_{x} \quad \sum_{e \in E} w_{e} x_{e} \\ \text{s.t.} \quad \sum_{e \in \delta(v)} x_{e} = b_{v}, \quad v \in N, \\ x_{e} \in \{0, 1\}, \qquad e \in E. \end{aligned}$$

d) Find the subset $S \subseteq N$ that maximizes the total weight of edges in $\delta(S)$. Recall that $\delta(S) \subseteq E$ is the set of edges with exactly one endpoint in S.

Answer: Let $x_e \in \{0, 1\}$ be the indicator variable of edge e in a cutset $\delta(S)$ and let y_v be the indicator variable of a node v in S. By definition of cutset, the endpoint nodes u and v from an edge $uv \in \delta(S)$ are such that $u \in S$ and $v \in N \setminus S$. Thus, our constraints must enforce that:

- i. If $(y_u, y_v) = (1, 1)$ or (0, 0) then $x_{uv} = 0$.
- ii. If $(y_u, y_v) = (1, 0)$ or (0, 1) then $x_{uv} = 1$.

These properties can be enforced by the constraints $x_{uv} \leq y_u + y_v$ and $x_{uv} \leq 2 - y_u - y_v$ for all $uv \in E$. Below we present the formulation for the maximum total weight of edges in $\delta(S)$ over all $S \subset N$:

$$\begin{split} \max_{x} & \sum_{e \in E} w_{e} x_{e} \\ \text{s.t.} & x_{uv} \leq y_{u} + y_{v}, & uv \in E, \\ & x_{uv} \leq 2 - y_{u} - y_{v}, & uv \in E, \\ & x_{e} \in \{0,1\}, \; y_{v} \in \{0,1\}, \; \; v \in N, \; e \in E. \end{split}$$

6. You are organizing a single-track workshop with n speakers. Your lecture room is available from time 0 to T. Each speaker i has specified the length of their lecture, l_i . Furthermore, because these are prima donna academics, they have also given you an earliest and latest time they want to start, $a_i \leq b_i$. (You may assume all numbers are integers.)

a) Write a MIP formulation to determine if you can feasibly arrange the lectures in the room without any overlap. Your formulation should include continuous variables $t_i \in [0, T]$ representing lecture *i*'s start time, and may include other variables.

Answer: Denote by [p:q] the set of consecutive integer from p to q. Let l_0 be equal to 0 and let \overline{b}_i be equal to $\min(b_i, T - l_i)$. Consider the auxiliary variable $z_{ij} \in \{0, 1\}$ that indicates if lecture j starts just after lecture i. Thus, our formulation is given below:

$\min_{t,z}$	0		
s.t.	$a_i \le t_i \le \overline{b}_i,$	$i \in [1:n],$	(Start time bounds)
	$t_j \ge t_i + l_i - M(1 - z_{ij}),$	$i\in [0:n], j\in [1:n],$	(Time ordering)
	$\sum_{i=0}^{n} z_{ij} = 1,$	$j \in [1:n],$	(Exact one lecture before)
	$\sum_{j=1}^{n} z_{ij} \le 1,$	$i \in [1:n],$	(At most one lecture after)
	$t_0 = 0, z_{ii} = 0,$	$i \in [1:n],$	(Variable elimination)
	$t_i \ge 0, z_{ij} \in \{0, 1\},$	$i\in [0:n] j\in [1:n].$	

b) Because all parameters are integers, we may assume all lectures start at integer times. Write a second formulation using binary indicator variables $x_{it} \in \{0, 1\}$ for i = 1, ..., n and t = 0, ..., T, where $x_{it} = 1$ means lecture *i* starts at time *t*.

Answer: Let \overline{b}_i be equal to $\min(b_i, T - l_i)$. The formulation in this case is given as

$$\begin{array}{ll} \min_{t,z} & 0 \\ \text{s.t.} & \sum_{t=a_i}^{\overline{b}_i} x_{it} = 1, & i \in [1:n], & (\text{Start time bounds}) \\ & x_{it} = 0, & i \in [1:n], \ t \in [0:T] \backslash [a_i:\overline{b}_i], & (\text{Out of bound starts}) \\ & \sum_{\tau=t}^{\min(T,t+l_i-1)} \sum_{\substack{j=1\\ j \neq i}}^n x_{j\tau} \le n \cdot (1-x_{it}), & i \in [1:n], \ t \in [0:T], & (\text{Conflict elimination}) \\ & x_{it} \in \{0,1\}, & i \in [1:n], \ t \in [0:T]. \end{array}$$

Given a lecture $i \in [1:n]$, the *conflict elimination* constraint prevents any other lecture $j \neq i$ from start in the time window from t to $t + l_i - 1$ if the lecture i have started at time t, i.e., $x_{it} = 1$.