Discrete Optimization
 ISyE 6662 - Spring 2023
 Homework 1

Instructor: Alejandro Toriello
TA: Filipe Cabral

January 23, 2023.

1. Let $A \in Z^{n \times n}$ be a square integer matrix, and suppose the largest absolute value of any entry in A is a. Prove that $|\operatorname{det}(A)| \leq(a n)^{n}$.

Answer: We know that the determinant function is given by $\operatorname{det}(A)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{1, \sigma(1)} \cdots a_{n, \sigma(n)}$, where S_{n} is the set of all permutations $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ and $\operatorname{sgn}(\sigma) \in\{-1,1\}$ is the sign of the permutation σ. Thus, the following inequalities hold:

$$
|\operatorname{det}(A)| \leq \sum_{\sigma \in S_{n}}\left|a_{1, \sigma(1)} \cdots a_{n, \sigma(n)}\right| \leq \sum_{\sigma \in S_{n}} a^{n} \leq n!a^{n} \leq n^{n} a^{n},
$$

where the first follows from the triangular inequality, the second is because a is the largest absolute entry of A, and the third is because the number of all possible permutations of n objects is n !.
2. Let $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ be a non-empty polyhedron. Prove the following:
a) P contains a line if and only if $A x=0$ has a non-zero solution.

Answer: Suppose that P contains a line, i.e., there exists $d \in \mathbb{R}^{n} \backslash\{0\}$ and $x \in P$ such that $x+t d$ belongs to P for all $t \in \mathbb{R}$. Suppose that $(A d)_{i} \neq 0$ for some $i=1, \ldots, m$. Let $t_{\alpha}=\alpha \cdot(A d)_{i}$ and note that

$$
b_{i} \geq\left(A x+t_{\alpha} A d\right)_{i}=(A x)_{i}+\alpha \cdot(A d)_{i}^{2}, \quad \forall \alpha>0
$$

However, this is a contradiction since $(A x)_{i}+\alpha \cdot(A d)_{i}^{2}$ tends to $+\infty$ as α goes to $+\infty$. Thus, d is a non-zero solution to $A x=0$.

Conversely, suppose that $A x=0$ has a non-zero solution $d \in \mathbb{R}^{n} \backslash\{0\}$. Then, $x+t d$ belongs to P for every $x \in P$ and $t \in \mathbb{R}$ because

$$
A(x+t d)=A x+t \cdot \underbrace{A d}_{=0}=A x \leq b .
$$

b) P is unbounded if and only if $A x \leq 0$ has a non-zero solution.

Answer: Suppose that P is unbounded, that is, there exists $d \in \mathbb{R}^{n} \backslash\{0\}$ and $x \in P$ such that $x+t d$ belongs to P for all $t \in \mathbb{R}_{+}$. Here the scalar t is non-negative instead of any real number. The remaining argument is similar.

Suppose that $(A d)_{i}>0$ for some $i=1, \ldots, m$. Let $t_{\alpha}=\alpha \cdot(A d)_{i}$ and note that

$$
b_{i} \geq\left(A x+t_{\alpha} A d\right)_{i}=(A x)_{i}+\alpha \cdot(A d)_{i}^{2}, \quad \forall \alpha>0
$$

However, this is a contradiction since $(A x)_{i}+\alpha \cdot(A d)_{i}^{2}$ tends to $+\infty$ as α goes to $+\infty$. Thus, d is a non-zero solution to $A x \leq 0$.

Conversely, suppose that $A x \leq 0$ has a non-zero solution $d \in \mathbb{R}^{n} \backslash\{0\}$. Then, $x+t d$ belongs to P for every $x \in P$ and $t \in \mathbb{R}_{+}$.
3. Recall that the convex hull of a set of points S is the set of points that can be obtained as a convex combination of (finitely points in S, or equivalently, it is the smallest convex set containing S. Let $S=\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n} x_{i}^{2} \leq\right.$ $\left.\rho^{2}\right\}$ for some $\rho \geq 0$. Is conv $\left(S \cap \mathbb{Z}^{n}\right)$ a polyhedron? What about $\operatorname{conv}\left(S \cap\left(\mathbb{R} \times \mathbb{Z}^{n-1}\right)\right), \operatorname{conv}\left(S \cap\left(\mathbb{R}^{2} \times \mathbb{Z}^{n-2}\right)\right)$, and so forth? Justify your answer.

Answer: We know that a convex combination of union of polytopes is also a polytope (it is just the convex combination of the union of extreme points). Then, we have the following cases:
(i) $S \cap \mathbb{Z}^{n}$ is a finite set, so $\operatorname{conv}\left(S \cap \mathbb{Z}^{n}\right)$ is a polytope.
(ii) $S \cap\left(\mathbb{R} \times Z^{n-1}\right)$ is a finite union of line segments, so $\operatorname{conv}\left(S \cap\left(\mathbb{R} \times Z^{n-1}\right)\right)$ is also a polytope.
(iii) $S \cap\left(\mathbb{R}^{k} \times Z^{n-k}\right)$ is a finite union of k-dimensional balls for $2 \leq k \leq n$, which implies that conv $\left(S \cap\left(\mathbb{R}^{k} \times\right.\right.$ $\left.Z^{n-k}\right)$) is not a polytope. For instance, consider $\rho=1, n=3$ and $k=2$. Then,

$$
S \cap\left(\mathbb{R}^{2} \times \mathbb{Z}\right)=\{(0,0,-1)\} \cup\left(C_{2} \times\{0\}\right) \cup\{(0,0,0)\}
$$

where C_{2} is the unit circle given by $C_{2}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2} \leq 1\right\}$. Thus, the convex set $\operatorname{conv}\left(S \cap\left(\mathbb{R}^{2} \times \mathbb{Z}\right)\right)$ is given by the union of two cones connected by the circular base, i.e.,

$$
\operatorname{conv}\left(S \cap\left(\mathbb{R}^{2} \times \mathbb{Z}\right)\right)=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}^{2}+x_{2}^{2}+\left|x_{3}\right| \leq 1\right\}
$$

4. Let $P \subseteq \mathbb{R}^{n}$ be a polytope given as the convex hull of a set of points, $P=\operatorname{conv}\left\{x_{1}, \ldots, x_{m}\right\}$. Let $c_{1}, \ldots, c_{k} \in \mathbb{R}^{n}$ be a set of objective vectors.
a) Write a linear program that solves $\min _{x \in P} \max _{l=1, \ldots, k} c^{l} x$.

Answer: For a fixed $x \in P$, the term $\max _{l=1, \ldots, k} c^{l} x$ can be described as the maximum of $c x$ over all the objective costs c subject to $c \in \operatorname{conv}\left\{c^{1}, \ldots, c^{k}\right\}$. We conclude by taking the dual of this problem and grouping the minimization problems. Indeed,

$$
\begin{aligned}
& \min _{x \in P} \max _{l=1, \ldots, k} c^{l} x=\min _{x \in P} \max _{\lambda, c} c x \\
& \text { s.t. } \quad \sum_{l=1}^{k} \lambda_{l} c^{l}=c, \\
& \sum_{l=1}^{k} \lambda_{l}=1, \\
& \lambda \geq 0, c \in \mathbb{R}^{n} \text {, } \\
& \stackrel{(\mathrm{dual})}{=} \min _{x \in P} \min _{\gamma, \pi} \gamma \\
& \text { s.t. } \quad c^{l} \pi+\gamma \geq 0, \quad l=1, \ldots, k, \\
& -\pi=x, \\
& \pi \in \mathbb{R}^{n}, \gamma \in \mathbb{R}, \\
& =\min _{\alpha, x, \gamma} \gamma \\
& \text { s.t. } \quad-c^{l} x+\gamma \geq 0, \quad l=1, \ldots, k, \\
& x=\sum_{i=1}^{m} \alpha_{i} x_{i} \text {, } \\
& \sum_{i=1}^{m} \alpha_{i}=1 \text {, } \\
& x \in \mathbb{R}^{n}, \gamma \in \mathbb{R}, \alpha \geq 0 \text {. }
\end{aligned}
$$

b) Explain how you can efficiently solve $\max _{x \in P} \max _{l=1, \ldots, k} c^{l} x$.

Answer: Note that the following identities hold:

$$
\max _{x \in P} \max _{l=1, \ldots, k} c^{l} x=\max _{l=1, \ldots, k} \max _{x \in P} c^{l} x=\max _{\substack{i=1, \ldots, m, l=1, \ldots, k}} c^{l} x_{i}
$$

Thus, we can find the largest inner product $c^{l} x_{i}$ among $l=1, \ldots, k$ and $i=1, \ldots, m$.
Now suppose P is given by a set of linear inequalities, $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$.
c) Repeat question (a).

Answer: A similar idea applies to this question.

$$
\begin{aligned}
\min _{x \in P} \max _{l=1, \ldots, k} c^{l} x=\min _{x \in P} \min _{\gamma} & \gamma \\
\text { s.t. } & \gamma \geq c^{l} x, \quad l=1, \ldots k, \\
& \gamma \in \mathbb{R}, \\
=\min _{x \in P} \min _{\gamma} & \gamma \\
\text { s.t. } & \gamma \geq c^{l} x, \quad l=1, \ldots k, \\
& A x \leq b, \\
& x \in \mathbb{R}^{n}, \gamma \in \mathbb{R} .
\end{aligned}
$$

d) Write a mixed-integer linear program that solves $\max _{x \in P} \max _{l=1, \ldots, k} c^{l} x$.

Answer: Roughly speaking, we create k copies of the polytope P and use a binary variable $z_{l} \in\{0,1\}$ to indicate the copy we refer. Indeed,

$$
\begin{array}{rll}
\max _{x \in P} \max _{l=1, \ldots, k} c^{l} x=\max _{x, x_{l}, z_{l}} & \sum_{l=1}^{k} c^{l} x_{l} \\
\text { s.t. } & A x_{l} \leq z_{l} b,
\end{array} \quad l=1, \ldots, k
$$

Because P is a polytope (bounded polyhedron) the only solution to $A x \leq 0$ is the zero vector. Thus, x_{l} belongs to P if z_{l} is 1 and x_{l} is the zero vector if z_{l} is 0 .
5. Consider an undirected graph (N, E) with associated edge weights $w \in \mathbb{R}^{E}$, each of which may be positive, negative or zero. For each of the following problems, give an integer programming formulation and prove its correctness.
a) For a given subset of nodes $S \subseteq N$, find the maximum-weight subtree of the graph that contains S and may or may not contain other nodes.

Answer: Let $x_{e} \in\{0,1\}$ be the variable that indicates with 1 if the edge $e \in E$ belongs to our subgraph and 0 otherwise. Let y_{v} be the indicator variable of a node $v \in N$ of our subgraph. First, we require that every node in S belongs to the subgraph, i.e., $y_{v}=1$ for every $v \in S$. Also, an edge belongs to the subgraph if both endpoint nodes belong to it, that is, $x_{u v} \leq y_{u}$ and $x_{u v} \leq y_{v}$, for all $u, v \in V$ such that $u v \in E$.

To enforce an acyclic subgraph we consider the cycle elimination constraint $\sum_{e \in E(U)} \leq|U|-1$, for all $U \subset N$ such that $U \neq \emptyset$ and $U \neq N$. In particular, the resulting subgraph is a forest (union of trees). Recall that a forest with n nodes and m connected components have $n-m$ edges. So, we include the constraint $\sum_{e \in E} x_{e}=\sum_{v \in N} y_{v}-1$ to enforce a subtree, that is, only one connected component. Below
we have the complete formulation:

$$
\begin{array}{rll}
\max _{x, y} & \sum_{e \in E} w_{e} x_{e} & \\
\text { s.t. } & \sum_{e \in E(U)} \leq|U|-1, & U \subset N: U \neq \emptyset, N, \\
& \sum_{e \in E} x_{e}=\sum_{v \in N} y_{v}-1, & \\
& x_{u v} \leq y_{u}, \quad x_{u v} \leq y_{v}, \quad u, v \in V ; u v \in E \\
& y_{v}=1, & v \in S, \\
& x_{e} \in\{0,1\}, e \in E . &
\end{array}
$$

b) For a given subset $S \subseteq N$, find the maximum-weight subgraph in which nodes in S have odd degree and nodes in $N \backslash S$ have even degree (including possibly zero).

Answer: We create an auxiliary variable $z_{v} \in \mathbb{Z}_{+}$for each vertex $v \in N$ to represent even and odd degrees, see the formulation below:

$$
\begin{array}{rll}
\max _{x} & \sum_{e \in E} w_{e} x_{e} & \\
\text { s.t. } & \sum_{e \in \delta(v)} x_{e}=2 z_{v}+1, \quad v \in S, \\
& \sum_{e \in \delta(v)} x_{e}=2 z_{v}, \quad v \in N \backslash S, \\
& x_{e} \in\{0,1\}, z_{v} \in \mathbb{Z}_{+}, \quad v \in N, e \in E .
\end{array}
$$

c) For a positive integer vector $b \in \mathbb{Z}_{+}^{N}$, find the maximum-weight graph in which node $i \in N$ has degree b_{i}.

Answer: This formulation is similar to the one in (b) but without the auxiliary variable:

$$
\begin{array}{rll}
\max _{x} & \sum_{e \in E} w_{e} x_{e} & \\
\text { s.t. } & \sum_{e \in \delta(v)} x_{e}=b_{v}, \quad v \in N \\
& x_{e} \in\{0,1\}, & e \in E
\end{array}
$$

d) Find the subset $S \subseteq N$ that maximizes the total weight of edges in $\delta(S)$. Recall that $\delta(S) \subseteq E$ is the set of edges with exactly one endpoint in S.

Answer: Let $x_{e} \in\{0,1\}$ be the indicator variable of edge e in a cutset $\delta(S)$ and let y_{v} be the indicator variable of a node v in S. By definition of cutset, the endpoint nodes u and v from an edge $u v \in \delta(S)$ are such that $u \in S$ and $v \in N \backslash S$. Thus, our constraints must enforce that:
i. If $\left(y_{u}, y_{v}\right)=(1,1)$ or $(0,0)$ then $x_{u v}=0$.
ii. If $\left(y_{u}, y_{v}\right)=(1,0)$ or $(0,1)$ then $x_{u v}=1$.

These properties can be enforced by the constraints $x_{u v} \leq y_{u}+y_{v}$ and $x_{u v} \leq 2-y_{u}-y_{v}$ for all $u v \in E$. Below we present the formulation for the maximum total weight of edges in $\delta(S)$ over all $S \subset N$:

$$
\begin{array}{rll}
\max _{x} & \sum_{e \in E} w_{e} x_{e} & \\
\text { s.t. } & x_{u v} \leq y_{u}+y_{v}, & u v \in E, \\
& x_{u v} \leq 2-y_{u}-y_{v}, & u v \in E, \\
& x_{e} \in\{0,1\}, y_{v} \in\{0,1\}, & v \in N, e \in E .
\end{array}
$$

6. You are organizing a single-track workshop with n speakers. Your lecture room is available from time 0 to T. Each speaker i has specified the length of their lecture, l_{i}. Furthermore, because these are prima donna academics, they have also given you an earliest and latest time they want to start, $a_{i} \leq b_{i}$. (You may assume all numbers are integers.)
a) Write a MIP formulation to determine if you can feasibly arrange the lectures in the room without any overlap. Your formulation should include continuous variables $t_{i} \in[0, T]$ representing lecture i 's start time, and may include other variables.

Answer: Denote by $[p: q]$ the set of consecutive integer from p to q. Let l_{0} be equal to 0 and let \bar{b}_{i} be equal to $\min \left(b_{i}, T-l_{i}\right)$. Consider the auxiliary variable $z_{i j} \in\{0,1\}$ that indicates if lecture j starts just after lecture i. Thus, our formulation is given below:

$$
\begin{array}{rlll}
\min _{t, z} & 0 & & \\
\mathrm{s.t.} & a_{i} \leq t_{i} \leq \bar{b}_{i}, & i \in[1: n], & \text { (Start time bounds) } \\
& t_{j} \geq t_{i}+l_{i}-M\left(1-z_{i j}\right), & i \in[0: n], \quad j \in[1: n], & \text { (Time ordering) } \\
& \sum_{i=0}^{n} z_{i j}=1, & j \in[1: n], & \\
& \sum_{j=1}^{n} z_{i j} \leq 1, & i \in[1: n], & \text { (Exact one lecture before) } \\
& t_{0}=0, \quad z_{i i}=0, & i \in[1: n], & \text { (At most one lecture after) } \\
& t_{i} \geq 0, \quad z_{i j} \in\{0,1\}, & i \in[0: n] \quad j \in[1: n] . &
\end{array}
$$

b) Because all parameters are integers, we may assume all lectures start at integer times. Write a second formulation using binary indicator variables $x_{i t} \in\{0,1\}$ for $i=1, \ldots, n$ and $t=0, \ldots, T$, where $x_{i t}=1$ means lecture i starts at time t.

Answer: Let \bar{b}_{i} be equal to $\min \left(b_{i}, T-l_{i}\right)$. The formulation in this case is given as

$$
\begin{array}{rlll}
\min _{t, z} & 0 & & \\
\text { s.t. } & \sum_{t=a_{i}}^{\bar{b}_{i}} x_{i t}=1, & i \in[1: n], & \text { (Start time bounds) } \\
& x_{i t}=0, & i \in[1: n], t \in[0: T] \backslash\left[a_{i}: \bar{b}_{i}\right], & \text { (Out of bound starts) } \\
& \sum_{\tau=t}^{\min \left(T, t+l_{i}-1\right)} \sum_{\substack{j=1 \\
j \neq i}}^{n} x_{j \tau} \leq n \cdot\left(1-x_{i t}\right), & i \in[1: n], t \in[0: T], & \text { (Conflict elimination) } \\
& x_{i t} \in\{0,1\}, & i \in[1: n], t \in[0: T] . &
\end{array}
$$

Given a lecture $i \in[1: n]$, the conflict elimination constraint prevents any other lecture $j \neq i$ from start in the time window from t to $t+l_{i}-1$ if the lecture i have started at time t, i.e., $x_{i t}=1$.

