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Simulation Theory and Methods Homework 2
Jacob Aguirre Email: aguirre@gatech.edu
Instructor: Dr. Eunhye Song

Problem 1. Recall that the exponential distribution has the support, x > 0. The shifted
exponential distribution is defined as the distribution of a random variable that has nonzero
shift from an exponential distribution.

1. Derive the pdf of a shifted exponential distribution with shift c and rate λ.

Proof. The cdf of an exponential distribution is just 1 − e−λx. By introducing a con-
stant shift c, the equation modifies to 1 − e−λ(x−c) to accommodate the shift in the
distribution’s location. To obtain the pdf of this shifted exponential distribution, we
differentiate this adjusted CDF with respect to x, yielding λe−λ(x−c).

2. Derive the MLEs of c and λ, ĉ, λ̂, respectively estimated from the size−n i.i.d. sample
from the shifted exponential distribution, X1, . . . , Xn.

Proof. Recall that MLE equates to maximizing the log-likelihood function. So if we
have n observations, the log likelihood is

log
(
λne−λ

∑n
i=1 xi−nc

)
= n log(λ)− λ

n∑
i=1

xi − nλc.

By differentiating this expression with respect to c and λ,

d

dc
(n log(λ)− λ

n∑
i=1

xi − nλc) = −nλ,

d

dλ
(n log(λ)− λ

n∑
i=1

xi − nλc) =
n

λ
−

n∑
i=1

xi − nc.

Clearly, the optimal value of c, denoted as ĉ, is the minimum of the sample set
{X1, X2, . . . , Xn}, given the monotonically increasing nature of the log-likelihood func-
tion with respect to c. Furthermore, by equating the derivative with respect to λ to
zero, we find the estimator λ̂ as 1

X̄−min{X1,X2,...,Xn} , where X̄ is the sample mean.

3. Do these MLEs achieve consistency (in-probability convergence to the true c and λ)?
Prove your claim.
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Proof. According to the weak law of large numbers and Slutsky’s theorem, both es-
timators demonstrate consistency. This implies that X̄ approaches the actual mean
1
λ
+ c as the sample size increases, and the limit of the minimum value of the sam-

ple set, limn→∞min{X1, . . . , Xn}, converges to c. Consequently, the probability that
the absolute difference between λ̂n and λ is less than any positive number ϵ ap-
proaches 1, P (|λ̂n − λ| < ϵ) = 1, and similarly, the probability that the absolute
difference between ĉn and c is less than ϵ also approaches 1 as n tends to infinity,
limn→∞ P (|ĉn − c| < ϵ) = 1, aligning with the expectations. Thus, we’re done.

4. In this case, we can obtain the exact sampling distribution of
√
n(ĉ − c). Find the

sampling distribution and show your derivation. What is the asymptotic distribution
of

√
n(ĉ− c)?

Proof. We already know that convergence in probability occurs. Since convergence
pertains to a specific point, and again recalling that convergence in probability suggests
almost sure convergence, we almost surely get

lim
n→∞

√
n(ĉ− c) = 0.

5. Derive the asymptotic distribution of
√
n(λ̂− λ).

Proof. Let us first define X1 = min{X1, . . . , Xn} and introduce a function Y = 1
X̄−X1

.
Then we can just take limn→∞ as

lim
n→∞

√
n(λ̂− λ) = lim

n→∞

√
n

(
1

X̄ −X1

− λ

)
= lim

n→∞

√
n(Y − λ)

= lim
n→∞

√
n

(
Y0 +

1

y20

(
Y − 1

λ

)
− λ

)
= lim

n→∞

√
n

(
1

y20

(
Y − 1

λ

))
= lim

n→∞

√
n
1

y20

(
(X̄ − c− λ)− (X1 + c)

)−1

P−−−−−−−→
using slutsky

lim
n→∞

√
n
1

y20

(
X̄ − C − λ

)−1

−−−−→
by c.l.t.

N (0,
1

λ2
)

Thus we have convergence to a normal distribution with mean 0 and variance 1
λ2

through Slutsky’s theorem and the central limit theorem .
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Problem 2. Recall that in class we showed that the interpolated ecdf is pointwise (e.g.,
once x ∈ R is fixed) strongly consistent with the true cdf of the i.i.d. observations. Show
that the interpolated ecdf is uniformly strongly consistent.

Proof. Suppose we have an interval with a certain ϵ > 0. In creating an ordered set of points,
let’s call it Ω in doing so we should select a step size k > 1

ϵ
so that our ordered set of points

satisfies
−∞ = Ω0 < Ω1 ≤ · · · ≤ Ωk = ∞.

The intuition for the above is just that we’re effectively segmenting the support of F , which
here spans (−∞,∞), into disjoint intervals. So within each interval ℓ, the function F ’s left
limit and its actual value at Ωℓ are bound by the step ℓ

k

F (Ω−
ℓ ) ≤

ℓ

k
≤ F (Ωℓ).

Hence, if Ωℓ > Ω
ℓ−1, it follows that

F (Ω−
ℓ )− F (Ω

ℓ−1) < ϵ.

Since we have point-wise convergence,

Fn(Ωℓ) −−→
a.s.

F (Ωℓ) and Fn(Ω
−
ℓ ) −−→a.s. F (Ω−

ℓ ).

In other words, the empirical distribution function at these points will converge to the true
distribution function with a probability of 1 as we collect more and more data. Obviously
the difference between these convergences narrows to zero, almost surely and so,

|Fn(Ωℓ)− F (Ωℓ)| −−→
a.s.

0 and |Fn(Ω
−
ℓ )− F (Ω−

ℓ )| −−→a.s. 0.

Therefore, for all ℓ as n → ∞,

∆n = max
ℓ∈L

{|Fn(Ωℓ)− F (Ωℓ)|, |Fn(Ω
−
ℓ )− F (Ω−

ℓ )|} −−→
a.s.

0.

For any x within F ’s support, we need to locate Ωℓ such that x falls within [Ω
ℓ−1,Ωℓ]. Again,

recall that for any point x, Fn(x) is just the proportion of observations that are less than or
equal to x. It follows that

Fn(x)− F (x) ≤ Fn(Ω
−
ℓ )− F (Ω

ℓ−1) ≤ Fn(Ω
−
ℓ )− F (Ω−

ℓ ) + ϵ,

Fn(x)− F (x) ≥ Fn(Ωℓ−1)− F (Ω−
ℓ ) ≥ Fn(Ωℓ−1)− F (Ω

ℓ−1)− ϵ.

The first equation above gives an upper bound on the difference between the empirical and
true distribution functions at x. It says that this difference is at most as large as the difference
between the empirical and true distribution functions at the right endpoint of the interval
(Ω−

ℓ ) plus an error term ϵ. The second inequality provides a lower bound on the difference
between the empirical and true distribution functions at x. Continuing, we get

Fn(Ωℓ−1)− F (Ω
ℓ−1)− ϵ ≤ Fn(x)− F (x) ≤ Fn(Ω

−
ℓ )− F (Ω−

ℓ ) + ϵ.
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The lefthand side of the above sets a lower limit anf the right hand side sets an upper limit
(notice the difference for the ϵ terms. So for any x, we assert that as n → ∞,

|Fn(x)− F (x)| ≤ ∆n + ϵ −−→
a.s.

ϵ =⇒ sup
x∈R

|Fn(x)− F (x)| −−→
a.s.

ϵ.

Finally, suppose we denote A to be the set of all (x, ϵ) where the convergence is confirmed.
Thus, A can be described as an intersection and a limiting bound,

A :=
⋂
ϵ>0

Aϵ := lim
ϵ→0

Aϵ.

Given the convergence is evident for all x given any ϵ, then 1 = limϵ→0 P (Aϵ) = P (A),
thereby validating our proposition.

Problem 3. Recall that you learned the polar method to generate two independent
N (0, 1) random variables. Prove that the algorithm indeed is correct. That is, the two-
dimensional vector it returns has the correct distribution.

Proof. When selecting a random point (X, Y ) from a uniform distribution over the square
(−1, 1) × (−1, 1), we consider the initial radius U = X2 + Y 2. Analyzing U ’s distribution,
we observe:

P (U ≤ r) = P (X2 + Y 2 ≤ r)

=
area of circle with radius

√
r

area of square

=
π · r
4π

=
r

4
,

indicating a correction in the calculation to properly reflect the square’s area and the pro-
portion of the circle’s area within it. This suggests U scales uniformly within [0, 1] given the
correct normalization. For the transformation R2 = −2 log(U), if U is uniformly distributed,
then R2 follows an exponential distribution with parameter 2.

The angle θ, created by X and Y , is a uniform distribution from 0 to 2π due to the
symmetry and uniformity of points within the square. This can be seen by considering the
geometry of the situation: any direction from the origin within the square is equally likely,
leading to

P (θ ≤ ϕ) =
arc length corresponding to ϕ

total circumference

=
ϕ

2π
,

which confirms θ ∼ U(0, 2π). Notice that the independence of radius and angle in this setup
is exactly the Box-Muller transformation, where the inherent independence allows for us to
generate the normally distributed variables. By Box-Muller method, where R2 and θ are
used to produce Gaussian variables, e.g., X, Y ∼ N (0, 1).
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Problem 4. Recall that in class, we studied random number generation and Box-Müeller
method.

1. Implement a Python code that does the following:

• Linear congruential generators that generate uniform random numbers z0, a,m,
and c.

• Standard normal random variate generator that returns two i.i.d. N (0, 1) vari-
ables using the LCG implemented above.

2. For two settings of LCGs, (m, a, c) = (64, 21, 1) and (64, 37, 1), respectively, produce
standard normal RVs from the algorithm you implemented. Use the full period (both
are full period generators. Which of the LCGs has better performances? Support your
answer with your experiment results.

Proof. I just use python for coding this.

de f g e n e r a t e l c g ( i n i t i a l s e e d , mu l t i p l i e r , increment , modulus ) −> l i s t :
c u r r en t va lu e = ( mu l t i p l i e r ∗ ( i n i t i a l s e e d + increment ) ) % modulus
random sequence = [ cu r r en t va lu e / modulus ]
whi l e True :

cu r r en t va lu e = ( mu l t i p l i e r ∗ ( cu r r en t va lu e + increment ) ) %mod
new random = cur r en t va lu e / modulus
i f new random in random sequence :

break
random sequence . append ( new random)

return random sequence

Similarly for Box-Müeller method, we have

de f g en e r a t e g au s s i a n pa i r ( v1 , v2 ) :
r ad iu s = (−2 ∗ math . l og ( v1 ) ) ∗∗ 0 .5
ang le = 2 ∗ math . p i ∗ v2
gaus s i an x = rad iu s ∗ math . cos ( ang le )
gaus s i an y = rad iu s ∗ math . s i n ( ang le )
re turn gauss ian x , gaus s i an y

To answer the second part of this question, we get a figure that looks like an Amoeba
(if you’re familiar with tropical geometry) that has 3 “tentacles” that spiral out from a
central “locus” in the case of the non-prime generator. The other points (which stem
from using the full period prime generator) don’t look like they have any pattern.

Problem 5 (6.23). We claim the following algorithm implements the inverse cdf method
to generate Poisson random variables with mean λ; that is, Pr{X = x} = e−λλx/x! for
x = 0, 1, 2, . . .. The algorithm is as follows,

1. Set c = d = e−λ and X = 0
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2. Generate U ∼ U(0, 1)

3. Until U ≤ c do

• X = X + 1

• d = dλ/X

• c = c+ d
Loop

4. Return X

First, prove that this algorithm does as claimed. Then derive the expected number of
times that the loop is executed for each random variate generated. Notice that it is an
increasing function of λ, so the algorithm becomes less and less efficient as λ increases. Hint:
Pr{X = x} = λPr{X = x− 1}/x for x ≥ 1.

Proof. We seek to provide a certificate, per say, that the algorithm above does as claimed.
So, let’s prove this by looking at the base case of

P (X = 1) = λe−λ.

We then see that

dk =
λ

k
dk−1 =

λke−λ

k!
= P (X = k),

which aligns with the PMF for the Poisson distribution. Furthermore,

P (X < k) =
k∑

i=1

P (X = i) =
k∑

i=1

dk = ck.

Thus we’ve confirmed the algorithm’s functionality. For the analysis of the average iterations
required, simply calculate

E[X] =
∞∑
i=0

i · P (X = i)

=
∞∑
i=0

i · λ
ie−λ

i!

= λ,

underscoring that the expected count of iterations equates to λ, and so we’re done.

6



Problem 6 (6.30). Let X be a discrete-valued random variable that takes values x0 <
x1 < . . . < xn with probabilities p0, p1, . . . , pn, respectively. Derive, and prove the correctness
of a rejection algorithm that first generates an index I ∈ {0, 1, . . . , n} using the discrete
uniform distribution. What is the expected number of trials for your algorithm to generate
one X? Hint: The following simple algorithm works but is very inefficient: (i) Generate
W ∼ U(0, 1) and set I = ⌈(n + 1)W ⌉ − 1. (ii) Generate U ∼ U(0, 1). (iii) If U ≤ pI then
return X = xI ; otherwise go to step (i). First prove that this algorithm works, and that is
has expected number of trials n+1. Then, derive a better algorithm by applying the concept
of a majorizing function as used in the continuous case.

Proof. Observe that P [X = xi] = c · pi, implying

P [X = xi] = P [U ≤ pi] · P [I = i]

= pi · P [I = i]

= pi · P [⌈(n+ 1) ·W ⌉ − 1 = i]

= pi · P [(n+ 1) ·W ≤ i+ 1 | (n+ 1) ·W ≥ i] · P [(n+ 1) ·W ≥ i]

= pi ·
1

n+ 1
.

So we’ve shown the algorithm’s validity by accurately mirroring the pdf of the distribution
of X on a reduced scale and providing a valid certificate. If we let Y represent the iterations
required until termination, then clearly

taking expectation E[Y ] =
n+1∑
j=1

P [Y = j]

=
n+1∑
j=1

n∑
i=1

P [X = xi] =⇒ =
n+1∑
j=1

1

and so = n+ 1,

allowing us to conclude that the expected number of draws before halting is n+ 1.

Now, let’s discuss a potential “better” algorithm, that I attempt to justify but am un-
certain of. Suppose we take c = max p0, p1, . . . , pn. We will then repeat the following,

• Generate I uniformly from 0, 1, . . . , n.

• Generate U ∼ U(0, 1).

• If U ≤ pI
c
, return X = xI .

The choice of I is uniformly random, ensuring each xI has an initial equal chance of selection.
We also scale the acceptance probability by 1

c
, which ensures that the overall acceptance rate

is proportional to the true distribution of X, correcting for the uniform selection of I. With c
as defined, the success probability in each trial is

∑n
i=0

1
n+1

· pi
c
= 1

c(n+1)
. The expected number

of trials is therefore c(n + 1). While the simple algorithm has an expected number of trials
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of n + 1, the improved algorithm adjusts the expected number based on the distribution’s
maximum probability. For distributions where c is close to max p0, p1, . . . , pn, this method
significantly reduces the expected number of trials, especially when c(n+ 1) < n+ 1, which
is generally the case unless all pi are equal.
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