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1. (Weighting for clustering) Show that weighted Euclidean distance

d(w)(x, x′) =

p∑
j=1

wj(xj − x′
j)

2/

p∑
j=1

wj

satisfies

d(w)(x, x′) = d(z, z′) =

p∑
j=1

(zj − z′j)
2,

where zj = xj(wj/
∑p

i=1wj)
1/2, and z′j is similarly defined. Thus weighted Euclidean distance

based on x is equivalent to unweighted Euclidean distance based on z.
Solution. The conclusion is obvious:

d(z, z′) =

p∑
j=1

(zj − z′j)
2 =

p∑
j=1

(xj − x′
j)

2wj/

p∑
i=1

wj = d(w)(x, x′).□

2. Consider a two-class classification problem. The predictors (features) are x ∈ Rp.
Among the n observed data points, n1 are in class 1 and n2 are in class 2. The two classes
are coded as y = −n/n1 and n/n2 respectively.

1. Show that the LDA classifies to class 2 if

x⊤Σ̂−1(µ̂2 − µ̂1) > a threshold

and class 1 otherwise.

Solution. We have shown in class that x⊤Σ̂−1(µ̂2 − µ̂1) is the estimated linear dis-
criminant function. Therefore, the conclusion follows. Alternatively, the classification
rule is equivalent to the ML classification rule, which is also established in class. □

2. Consider minimization of the least squares criterion

n∑
i=1

(yi − β0 − β⊤
1 xi)

2.

Show that the Solution β̂1 satisfies{
(n− 2)Σ̂ +

n1n2

n
Σ̂B

}
β̂1 = n(µ̂2 − µ̂1),
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where Σ̂B = (µ̂2 − µ̂1)(µ̂2 − µ̂1)
⊤.

Solution. The Least Squares Criterion leads to

β̂ = (X ′X)−1X ′y,

β̂ =

(
n 1′X

X ′1 X ′X

)−1(
0

n(µ̂2 − µ̂1)

)
.

The lower corner of the block matrix inverse is the inverse of the following matrix:

X ′X − 1

n
X ′11′X =

∑
(xi − µ̂)(xi − µ̂)′

=
∑
1

(xi − µ̂1)(xi − µ̂1)
′ + n1(µ̂− µ̂1)(µ̂− µ̂1)

′

+
∑
2

(xi − µ̂2)(xi − µ̂2)
′ + n2(µ̂− µ̂2)(µ̂− µ̂2)

′

= (n− 2)Σ̂ + n1
n2
2

n2
(µ̂2 − µ̂1)(µ̂2 − µ̂1)

′ + n2
n2
1

n2
(µ̂2 − µ̂1)(µ̂2 − µ̂1)

′

= (n− 2)Σ̂ +
n1n2

n
Σ̂B.

Therefore, we have {
(n− 2)Σ̂ +

n1n2

n
Σ̂B

}
β̂1 = n(µ̂2 − µ̂1).□

3. Hence show that Σ̂Bβ̂1 is in the direction (µ̂2 − µ̂1) and thus β̂1 ∝ Σ̂−1(µ̂2 − µ̂1).
Therefore, the least square regression coefficient is identical to the LDA coefficient up
to a scale multiple.

Solution. Since (µ̂2 − µ̂1)
′β̂1 is a scalar, we know

Σ̂Bβ̂1 = (µ̂2 − µ̂1)(µ̂2 − µ̂1)
′β̂1 ∝ (µ̂2 − µ̂1),

and therefore, Σ̂β̂1 ∝ (µ̂2 − µ̂1), and β̂1 ∝ Σ̂−1(µ̂2 − µ̂1). □

4. Show that this results holds for any distinct coding of the two classes.

Solution. For any distinct coding of y ∈ {A,B}, there is a linear and one-to-one
mapping from z ∈ {−n1/n, n2/n} to y = c+ dz ∈ {A,B}. The least squares criterion
becomes

min
β0,β1

n∑
i=1

(yi − β0 − β⊤
1 xi)

2 ⇔ min
β0,β1

n∑
i=1

(c+ dzi − β0 − β⊤
1 xi)

2 ⇔ min
γ0,γ1

n∑
i=1

(zi − γ0 − γ⊤
1 xi)

2,

where γ0 = (β0 − c)/d and γ1 = β1/d. Therefore, the problem reduce to the original

problem, implying that γ1 ∝ Σ̂−1(µ̂2 − µ̂1) and therefore β̂1 ∝ Σ̂−1(µ̂2 − µ̂1). □
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3. Consider the LDA procedure. Suppose we transform the original predictors X to Ŷ =
X(X⊤X)−1X⊤Y = Xβ̂, the linear regression fit. Similarly, for any input x, we get a

transformed scalar ŷ = x⊤β̂. Show that LDA using Ŷ is identical to LDA in the original
space.
Solution. Now X should contain the constant 1. According to problem 2, we know that
LDA is equivalent to using the discriminant function x⊤β̂ > threshold.

If we transform our data and get a scalar ŷ = x⊤β̂, then LDA based on this scalar is
simply ŷ > threshold, which is the same as the original LDA. □

4. Show that the criterion

min
β0,β

n∑
i=1

{1− yif(xi)}+ +
λ

2
||β||2

is equivalent to the original SVM criterion of

min
β0,β

1

2
||β||2 + C

n∑
i=1

ξi

s.t. ξi ≥ 0, yi(x
⊤
i β + β0) ≥ 1− ξi,∀i.

Solution. In the SVM solution, we have

ξi ≥ max{0, 1− yif(xi)}.

We argue that in order to attain the minimum, it must be true that

ξi = max{0, 1− yif(xi)} = {1− yif(xi)}+.

Otherwise, we can reduce the objective function by letting the inequality being the equality
above. Consequently, the SVM criterion is equivalent to

min
β0,β

1

2
||β||2 + C

n∑
i=1

{1− yif(xi)}+.

By taking C = λ−1, we can prove the conclusion. □
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