ISYE 7405

Homework 7

Email: aguirre@gatech.edu

Jacob Aguirre Instructor: Dr. Shihao Yang

1. (Weighting for clustering) Show that weighted Euclidean distance

$$d^{(w)}(x, x') = \sum_{j=1}^{p} w_j (x_j - x'_j)^2 / \sum_{j=1}^{p} w_j$$

satisfies

$$d^{(w)}(x, x') = d(z, z') = \sum_{j=1}^{p} (z_j - z'_j)^2,$$

where $z_j = x_j (w_j / \sum_{i=1}^p w_j)^{1/2}$, and z'_j is similarly defined. Thus weighted Euclidean distance based on x is equivalent to unweighted Euclidean distance based on z. Solution. The conclusion is obvious:

$$d(z, z') = \sum_{j=1}^{p} (z_j - z'_j)^2 = \sum_{j=1}^{p} (x_j - x'_j)^2 w_j / \sum_{i=1}^{p} w_j = d^{(w)}(x, x').\Box$$

2. Consider a two-class classification problem. The predictors (features) are $x \in \mathcal{R}^p$. Among the *n* observed data points, n_1 are in class 1 and n_2 are in class 2. The two classes are coded as $y = -n/n_1$ and n/n_2 respectively.

1. Show that the LDA classifies to class 2 if

$$x^{\top}\widehat{\Sigma}^{-1}(\widehat{\mu}_2 - \widehat{\mu}_1) > a \text{ threshold}$$

and class 1 otherwise.

Solution. We have shown in class that $x^{\top}\widehat{\Sigma}^{-1}(\widehat{\mu}_2 - \widehat{\mu}_1)$ is the estimated linear discriminant function. Therefore, the conclusion follows. Alternatively, the classification rule is equivalent to the ML classification rule, which is also established in class. \Box

2. Consider minimization of the least squares criterion

$$\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1^{\mathsf{T}} x_i)^2.$$

Show that the Solution $\widehat{\beta}_1$ satisfies

$$\left\{ (n-2)\widehat{\Sigma} + \frac{n_1 n_2}{n} \widehat{\Sigma}_B \right\} \widehat{\beta}_1 = n(\widehat{\mu}_2 - \widehat{\mu}_1),$$

where $\widehat{\Sigma}_B = (\widehat{\mu}_2 - \widehat{\mu}_1)(\widehat{\mu}_2 - \widehat{\mu}_1)^{\top}$.

Solution. The Least Squares Criterion leads to

$$\widehat{\beta} = (X'X)^{-1}X'y,$$

$$\widehat{\beta} = \begin{pmatrix} n & 1'X \\ X'1 & X'X \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ n(\widehat{\mu}_2 - \widehat{\mu}_1) \end{pmatrix}.$$

The lower corner of the block matrix inverse is the inverse of the following matrix:

$$\begin{aligned} X'X &- \frac{1}{n}X'11'X &= \sum (x_i - \hat{\mu})(x_i - \hat{\mu})' \\ &= \sum_1 (x_i - \hat{\mu}_1)(x_i - \hat{\mu}_1)' + n_1(\hat{\mu} - \hat{\mu}_1)(\hat{\mu} - \hat{\mu}_1)' \\ &+ \sum_2 (x_i - \hat{\mu}_2)(x_i - \hat{\mu}_2)' + n_2(\hat{\mu} - \hat{\mu}_2)(\hat{\mu} - \hat{\mu}_2)' \\ &= (n-2)\widehat{\Sigma} + n_1 \frac{n_2^2}{n^2}(\hat{\mu}_2 - \hat{\mu}_1)(\hat{\mu}_2 - \hat{\mu}_1)' + n_2 \frac{n_1^2}{n^2}(\hat{\mu}_2 - \hat{\mu}_1)(\hat{\mu}_2 - \hat{\mu}_1)' \\ &= (n-2)\widehat{\Sigma} + \frac{n_1 n_2}{n}\widehat{\Sigma}_B. \end{aligned}$$

Therefore, we have

$$\left\{ (n-2)\widehat{\Sigma} + \frac{n_1 n_2}{n}\widehat{\Sigma}_B \right\} \widehat{\beta}_1 = n(\widehat{\mu}_2 - \widehat{\mu}_1).\Box$$

3. Hence show that $\widehat{\Sigma}_B \widehat{\beta}_1$ is in the direction $(\widehat{\mu}_2 - \widehat{\mu}_1)$ and thus $\widehat{\beta}_1 \propto \widehat{\Sigma}^{-1} (\widehat{\mu}_2 - \widehat{\mu}_1)$. Therefore, the least square regression coefficient is identical to the LDA coefficient up to a scale multiple.

Solution. Since $(\widehat{\mu}_2 - \widehat{\mu}_1)'\widehat{\beta}_1$ is a scalar, we know

$$\widehat{\Sigma}_B \widehat{\beta}_1 = (\widehat{\mu}_2 - \widehat{\mu}_1)(\widehat{\mu}_2 - \widehat{\mu}_1)' \widehat{\beta}_1 \propto (\widehat{\mu}_2 - \widehat{\mu}_1),$$

and therefore, $\widehat{\Sigma}\widehat{\beta}_1 \propto (\widehat{\mu}_2 - \widehat{\mu}_1)$, and $\widehat{\beta}_1 \propto \widehat{\Sigma}^{-1}(\widehat{\mu}_2 - \widehat{\mu}_1)$. \Box

4. Show that this results holds for any distinct coding of the two classes.

Solution. For any distinct coding of $y \in \{A, B\}$, there is a linear and one-to-one mapping from $z \in \{-n_1/n, n_2/n\}$ to $y = c + dz \in \{A, B\}$. The least squares criterion becomes

$$\min_{\beta_0,\beta_1} \sum_{i=1}^n (y_i - \beta_0 - \beta_1^\top x_i)^2 \Leftrightarrow \min_{\beta_0,\beta_1} \sum_{i=1}^n (c + dz_i - \beta_0 - \beta_1^\top x_i)^2 \Leftrightarrow \min_{\gamma_0,\gamma_1} \sum_{i=1}^n (z_i - \gamma_0 - \gamma_1^\top x_i)^2,$$

where $\gamma_0 = (\beta_0 - c)/d$ and $\gamma_1 = \beta_1/d$. Therefore, the problem reduce to the original problem, implying that $\gamma_1 \propto \widehat{\Sigma}^{-1}(\widehat{\mu}_2 - \widehat{\mu}_1)$ and therefore $\widehat{\beta}_1 \propto \widehat{\Sigma}^{-1}(\widehat{\mu}_2 - \widehat{\mu}_1)$. \Box

3. Consider the LDA procedure. Suppose we transform the original predictors X to $\widehat{Y} = X(X^{\top}X)^{-1}X^{\top}Y = X\widehat{\beta}$, the linear regression fit. Similarly, for any input x, we get a transformed scalar $\widehat{y} = x^{\top}\widehat{\beta}$. Show that LDA using \widehat{Y} is identical to LDA in the original space.

Solution. Now X should contain the constant 1. According to problem 2, we know that LDA is equivalent to using the discriminant function $x_{\perp}^{\top}\hat{\beta} > \text{threshold}$.

If we transform our data and get a scalar $\hat{y} = x^{\top} \hat{\beta}$, then LDA based on this scalar is simply $\hat{y} >$ threshold, which is the same as the original LDA. \Box

4. Show that the criterion

$$\min_{\beta_{0},\beta} \sum_{i=1}^{n} \{1 - y_{i}f(x_{i})\}_{+} + \frac{\lambda}{2} ||\beta||^{2}$$

is equivalent to the original SVM criterion of

$$\min_{\beta_{0,\beta}} \frac{1}{2} ||\beta||^{2} + C \sum_{i=1}^{n} \xi_{i}$$
s.t. $\xi_{i} \ge 0, \quad y_{i}(x_{i}^{\top}\beta + \beta_{0}) \ge 1 - \xi_{i}, \forall i.$

Solution. In the SVM solution, we have

$$\xi_i \ge \max\{0, 1 - y_i f(x_i)\}$$

We argue that in order to attain the minimum, it must be true that

$$\xi_i = \max\{0, 1 - y_i f(x_i)\} = \{1 - y_i f(x_i)\}_+$$

Otherwise, we can reduce the objective function by letting the inequality being the equality above. Consequently, the SVM criterion is equivalent to

$$\min_{\beta_0,\beta} \frac{1}{2} ||\beta||^2 + C \sum_{i=1}^n \{1 - y_i f(x_i)\}_+.$$

By taking $C = \lambda^{-1}$, we can prove the conclusion. \Box