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Instructor: Dr. Shihao Yang

1. (Problem 11.2.6 in Mardia, Kent and Bibby) (See Bartlett, 1965) The following problem involves two
multivariate normal populations with the same means but different covariance matrices. In discriminating
between monozygotic and dizygotic twins of like sex on the basis of simple physical measurements such as
weight, height, etc., the observations recorded are the differences x1, . . . , xp between corresponding measure-
ments on each set of twins. As either twin might have been measured first, the expected mean differences
are automatically zero. Let the covariance matrices for the two types of twins be denoted Σ1 and Σ2, and
assume for simplicity that

Σ1 = σ2
1{(1− ρ)I + ρ11′},

Σ2 = σ2
2{(1− ρ)I + ρ11′}.

Under the assumption of multivariate normality, show that the ML discriminant function is proportional to

z1 − ρ{1 + (p− 1)ρ}−1z2 + const.,

where z1 = x2
1 + · · ·+ x2

p and z2 = (x1 + · · ·+ xp)
2. How would the boundary between the allocation regions

be determined so that the two types of misclassification have equal probability?
Solution. Let Σ = {(1− ρ)I + ρ11′}. Therefore, Σ1 = σ2

1Σ,Σ2 = σ2
2Σ, and according to HW1,

Σ−1 =
1

1− ρ
I − ρ

(1− ρ)2 + ρ(1− ρ)p
11′.

Up to some constant independent of x, the difference between the log likelihoods of the two samples is
proportional to

x′Σ−1x+ constant = x′
{

1

1− ρ
I − ρ

(1− ρ)2 + ρ(1− ρ)p
11′
}
x+ constant.

Ignoring some multiplicative constant 1/(1− ρ), the difference between the log likelihoods is proportional to

p∑
i=1

x2
i −

ρ

1 + (p− 1)ρ

(
p∑

i=1

xi

)2

+ constant = z1 − ρ{1 + (p− 1)ρ}−1z2 + constant.

From the discussion above, we know that

L = z1 − ρ{1 + (p− 1)ρ}−1z2 = (1− ρ)x′Σ−1x.

Without loss of generality, we assume that σ2
1 > σ2

2 . And therefore the classification rule is Popualtion 1 if
L > ξ, and Population 2 otherwise. To ensure that the two types of misclassification rates are the same, we
need

P (L < ξ|Pop1) = P (L > ξ|Pop2).

Using the facts
L

(1− ρ)σ2
1

|Pop1 ∼ χ2
p,

L

(1− ρ)σ2
2

|Pop2 ∼ χ2
p,

we have

P

(
L

(1− ρ)σ2
1

<
ξ

(1− ρ)σ2
1

|Pop1

)
= P

(
L

(1− ρ)σ2
2

>
ξ

(1− ρ)σ2
2

|Pop2

)
.

Therefore, ξ can be determined through the following equation:

pchisq

(
ξ

(1− ρ)σ2
1

, df = p

)
= 1− pchisq

(
ξ

(1− ρ)σ2
2

, df = p

)
.□
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2. We discussed critical angles between a q-dimensional linear space LA and a p-dimensional linear space
LB in class (p ≤ q). We start from assuming LB = Lrow(X), where Xp×n is of full rank p, and obtain that

the critical angles are formed between the pairs (Yk, Ŷk) with Yk ∈ LB and Ŷk = YkPA ∈ LA. Now suppose
that instead of X, we begin with X̃ = MX, where M is nonsingular so that Lrow(X̃) = Lrow(X). Show

that the pairs (Ỹk,
̂̃Y k) are the same as (Yk, Ŷk). In other words, it does not matter how the linear space is

described.

Solution. Under the new basis, a vector ũ⊤ = g̃⊤X̃ ∈ LB projects into LA as ̂̃u⊤
= g̃⊤X̃PA. Then the cos2

of the angle between ũ and ̂̃u is

cos2 θ =
||̂̃u||2
||ũ||2

=
g̃⊤X̃PAX̃

⊤g̃

g̃⊤X̃X̃⊤g̃
=

g̃⊤MXPAX
⊤M⊤g̃

g̃⊤MXX⊤M⊤g̃
≡ g⊤Ag

g⊤Bg
,

where
g⊤ = g̃⊤M, A = XPAX

⊤, B = XX⊤.

Then the maximization problem reduce to the this problem under the old basis X. Due to the transformation
above, we have

Ξ⊤ = Ξ̃⊤M.

Therefore, under the new basis X̃, we have

Ỹ = Ξ̃⊤X̃ = Ξ⊤M−1MX = Ξ⊤X = Y,
̂̃
Y = Ỹ PA = Y PA = Ŷ .□

3. Let R be a p-dimensional random vector, and S be a q-dimensional random vector. ΣRR > 0 and
ΣSS > 0.

1. Show that for any fixed g ∈ Rp, the member of L(S) most highly correlated with g⊤R is g⊤ΣRSΣ
−1
SSS.

Solution. Since we have easily change the sign of correlation, we only need to consider the correlation
squared. For h ∈ L(S), we have

Corr2(h⊤S, g⊤R) =
h⊤ΣSRgg

⊤ΣRSh

h⊤ΣSSh× g⊤ΣRRg
∝ h⊤ΣSRgg

⊤ΣRSh

h⊤ΣSSh
.

According to the re-stated version of the fundamental lemma, we need to find the eigen-vector corre-
sponding to the largest eigen-value of the matrix

Σ
−1/2
SS ΣSRgg

⊤ΣRSΣ
−1/2
SS .

It is a matrix of rank one, and its maximal eigen-value is the only nonzero eigen-value, which must be
the same as its trace:

tr(Σ
−1/2
SS ΣSRgg

⊤ΣRSΣ
−1/2
SS ) = tr(g⊤ΣRSΣ

−1
SSΣSRg) = g⊤ΣRSΣ

−1
SSΣSRg ≡ λ1.

We can easily verify that

Σ
−1/2
SS ΣSRgg

⊤ΣRSΣ
−1/2
SS · Σ−1/2

SS ΣSRg = λ1Σ
−1/2
SS ΣSRg,

and therefore, Σ
−1/2
SS ΣSRg is the corresponding eigen-vector. Finally, we know that h∗ = Σ

−1/2
SS Σ

−1/2
SS ΣSRg =

Σ−1
SSΣSRg maximizes the correlation, and the corresponding element in L(S) is h∗⊤S = g⊤ΣRSΣ

−1
SSS.

□

Remark: We can also use Cauchy-Schwarz Inequality to prove this.

Corr(hTS, gTR) =
gTΣRSh√

hTΣSSh
√

gTΣRRg
=

< (gTΣRSΣ
−1
SS)

T , h >ΣSS√
< h, h >ΣSS

√
gTΣRRg

is maximized when h = (gTΣRSΣ
−1
SS)

T , therefore, hTS = gTΣRSΣ
−1
SSS maximizes this correlation.
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2. If p = 1, then the greatest possible correlation square between R and a linear combination of S is
λ = ΣRSΣ

−1
SSΣSR/ΣRR.

Solution. The correlation squared is

Corr2(h⊤S,R) =
h⊤ΣSRΣRSh

h⊤ΣSSh× ΣRR
,

with maximal value being

λ1(Σ
−1/2
SS ΣSRΣRSΣ

−1/2
SS )

ΣRR
.

Since Σ
−1/2
SS ΣSRΣRSΣ

−1/2
SS has rank one, it only has one nonzero eigen-value, which must be the same

as its trace:
tr(Σ

−1/2
SS ΣSRΣRSΣ

−1/2
SS ) = tr(ΣRSΣ

−1
SSΣSR) = ΣRSΣ

−1
SSΣSR.

Therefore, the maximal correlation squared is ΣRSΣ
−1
SSΣSR/ΣRR.

4. L is a p-dimensional subspace of Rn(p ≤ n) with linearly independent basis vectors α1, α2, . . . , αp. Let
A be a p× n matrix with rows α⊤

1 , . . . , α
⊤
p . Show that the p-dimensional volume in L of the parallelepiped

C formed by α1, . . . , αp satisfied vol2(C) = det(AA⊤).
Solution. We use the following intuitive definition of the volume of a parallelepiped in a p-dim subspace of
n-dim space:

vol(C) = ||α1|| × ||P⊥
1 α2|| × · · · × ||P⊥

1:(p−1)αp||,

where P⊥
1:(j−1)αj is the projection of αj onto the space orthogonal to the linear space spanned by α1, · · · , αj−1.

This definition is closely related to QR decomposition of a matrix. We have

Ap×n = Lp×pΓp×n,

where L is a lower-triangular matrix, and Γ has orthonormal row vectors. By the construction of the QR
decomposition, we know that the diagonal elements of L are the lengths of P⊥

1:(j−1)αj for j = 1, . . . , p.
Therefore,

vol(C) =

p∏
i=1

|lii| = det(L) =
√

det(LL⊤) =
√

det(LΓΓ⊤L⊤) =
√
det(AA⊤).□

5. (Problem 10.2.10 in Mardia, Kent and Bibby) (Hotelling, 1936) Four examinations in reading speed,
reading power, arithmetic speed, and arithmetic power were given to n = 148 children. The question of
interest is whether reading ability is correlated with arithmetic ability. The correlations are given by

R11 =

(
1 0.6328

0.6328 1

)
, R22 =

(
1 0.4248

0.4248 1

)
, R12 =

(
0.2412 0.0586
−0.0553 0.0655

)
.

Using Exercise 10.2.9, verify that the canonical correlations are given by

ρ1 = 0.3945, ρ2 = 0.0688.

Solution. Problem 10.2.9 seems silly. Using R we can directly obtain the following:

> r11<-matrix(c(1,0.6328,0.6328,1),2,2)

> r22<-matrix(c(1,0.4248,0.4248,1),2,2)

> r12<-matrix(c(0.2412,-0.0553,0.0586,0.0655),2,2)

>

> b<-sum(r12^2)+2*(r12[1,1]*r12[2,2]+r12[1,2]*r12[2,1])*r11[1,2]*r22[1,2]

-2*(r12[1,1]*r12[2,1]+r12[1,2]*r12[2,2])*r11[1,2]

-2*(r12[1,1]*r12[1,2]+r12[2,2]*r12[2,1])*r22[1,2]

>
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> c<-det(r12)^2*(1+r11[1,2]^2*r22[1,2]^2-r11[1,2]^2-r22[1,2]^2)

>

> lambda1<-(b+sqrt(b^2-4*c))/(2*(1-r11[1,2]^2)*(1-r22[1,2]^2))

> lambda2<-(b-sqrt(b^2-4*c))/(2*(1-r11[1,2]^2)*(1-r22[1,2]^2))

>

> eg.matrix<-eigen(solve(r11)%*%r12%*%solve(r22)%*%t(r12))

>

> sqrt(eg.matrix$values)

[1] 0.39450592 0.06884787

> sqrt(c(lambda1,lambda2))

[1] 0.39450592 0.06884787

>

6. (Problem 10.2.13 in Mardia, Kent and Bibby)

1. Using the data matrix for the open/close book data in Example 10.2.5 and Table 1.2.1, show that the
scores of the first eight individuals on the first canonical correlation variables are as follows:

Subject 1 2 3 4 5 6 7 8
η1 6.25 5.68 5.73 5.16 4.90 4.54 4.80 5.16
ϕ1 6.35 7.44 6.67 6.00 6.14 6.71 6.12 6.30

Solution.. I got slightly different results from the book:

> R<-cov(dat)

> R11<-R[1:2,1:2]

> R22<-R[3:5,3:5]

> R12<-R[1:2,3:5]

> R21<-R[3:5,1:2]

> library(expm)

> K<-sqrtm(solve(R11))%*%R12%*%sqrtm(solve(R22))

> eg1<-eigen(K%*%t(K))

> eg2<-eigen(t(K)%*%(K))

>

> open<-dat[,3:5]

> close<-dat[,1:2]

> s11<-solve(sqrtm(matrix(cov(scale(close)),nrow=2,ncol=2)))

> s12 <- matrix(cov(scale(close),scale(open)),nrow = 2, ncol=3)

> s22 <- solve(sqrtm(matrix(cov(scale(open)),nrow = 3, ncol=3)))

> K1 <- matrix(s11 %*% s12 %*% s22, nrow=2, ncol=3)

> #svd(K1)

>

> score1<-as.matrix(dat[1:8,1:2])%*%sqrtm(solve(R11))%*%eg1$vectors

> score2<-as.matrix(dat[1:8,3:5])%*%sqrtm(solve(R22))%*%(-eg2$vectors)

>

>

> a<-sqrtm(solve(R11))%*%eg1$vectors

> b<-sqrtm(solve(R22))%*%(-eg2$vectors)

>

> eta1<-score1[,1]

> phi1<-score2[,1]

>

> a[,1]

[1] 0.02583319 0.05145928
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> b[,1]

[1] 0.081909496 0.008020362 0.003454856

> rbind(eta1,phi1)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

eta1 6.208816 5.641315 5.694017 5.125894 4.869425 4.508175 4.765264 5.126308

phi1 6.305144 7.394028 6.624761 5.956654 6.103198 6.662991 6.080371 6.260580

2. Plot the above eight points on a scattergram.

Solution.. See Figure 1.
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Figure 1: CCA

3. Repeat the procedure for the second canonical correlation variable and analyze the difference in the
correlations. (The second canonical correlation is r2 = 0.041 and the corresponding loading vectors
are given by

a′
2 = (−0.064, 0.076), b′2 = (−0.091, 0.099,−0.014).)

Solution.. See the code below.

> a[,2]

[1] -0.06361496 0.07544314

> b[,2]

[1] -0.09035660 0.09840149 -0.01433057

> rbind(eta2,phi2)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

eta2 1.2879860 1.876823 0.7362276 1.9330836 0.7451757 1.230439 1.8103277 1.527737

phi2 -0.6217682 -1.501199 -1.0815961 0.2211601 0.1120998 -1.254111 -0.4515606 -0.845868

>

> sqrt(eg1$values)

[1] 0.66305211 0.04094594
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