
ISYE 7405

Homework 5
Jacob Aguirre Email: aguirre@gatech.edu
Instructor: Dr. Shihao Yang

1. Repeat the student score data PCA calculations and reproduce the following figures that we saw in
class.
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Solution. R code is shown below.

data_hw3 = read.table("scoredata.txt", header = FALSE)

data_hw3 = as.matrix(data_hw3)

data_hw3 = scale(data_hw3, center = TRUE, scale = FALSE)

S = cov(data_hw3)

eigen.S = -eigen(S, symmetric = TRUE)$vectors

eigen.S[, 1:2]

pdf("fg1_hw3.pdf", height = 6, width = 6)

plot(eigen.S[,2], type = "b", lty = 2, pch = "2",

xlab = "coordinate", ylab = "eigen-vector")

lines(eigen.S[,1], type = "b", pch = "1")

abline(h=0, col = "grey")

dev.off()

pdf("fg2_hw3.pdf", height = 6, width = 6)

total = data_hw3%*%eigen.S[,1]

diff = data_hw3%*%eigen.S[,2]

plot(diff~total, type = "n")

text(total, diff, label = 1:dim(data_hw3)[1], cex = 0.4)

abline(h = 0, col = "grey", lty = 2)

abline(v = 0, col = "grey", lty = 2)

dev.off()

□
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2. Let Xp×n be a data matrix. Assume that X has row means 0. Let Y(j) = LT
(j)X (recall we introduced

L(j) through the SVD of X).

1. Calculate the (p+ j)× (p+ j) matrix

(
X
Y(j)

)(
XT Y T

(j)

)
Solution. We have(

X
Y(j)

)(
XT Y T

(j)

)
=

(
XX⊤ XY ⊤

(j)

Y(j)X
⊤ Y(j)Y

⊤
(j)

)
=

(
XX⊤ XX⊤L(j)

L⊤
(j)XX⊤ L⊤

(j)XX⊤L(j)

)
.

Since

XX⊤L(j) = LC2L⊤L(j) = LC2

(
Ij
0

)
= L

(
C2

(j)

0

)
= L(j)C

2
(j),

we have (
X
Y(j)

)(
XT Y T

(j)

)
=

(
LC2L⊤ L(j)C

2
(j)

C2
(j)L

⊤
(j) C2

(j)

)
.□

2. Calculate X̂, the projection of X row by row into Lrow(Y(j))

Solution. The projection of X row by tow into Lrow(Y(j)) is

X̂ = XY ⊤
(j)(Y(j)Y

⊤
(j))

−1Y(j) = XX⊤L(j)(L
⊤
(j)XX⊤L(j))

−1L⊤
(j)X

= XX⊤L(j)(L
⊤
(j)LC

2L⊤L(j))
−1L⊤

(j)X

= LC2L⊤L(j)C
−2
(j)L

⊤
(j)LCR⊤

= LC2

(
Ij
0

)
C−2

(j)

(
Ij 0

)
CR⊤

= L

(
C(j) 0
0 0

)
R⊤

= L(j)C(j)R
⊤
(j)

=

j∑
k=1

ckllγ
⊤
k .□

3. Calculate X⊥(X⊥)T , where X⊥ = X − X̂

Solution. According to SVD of X:

X = LCR⊤ =

r∑
k=1

ckllγ
⊤
k ,

we have

X⊥ = X − X̂ =

r∑
k=j+1

cklkγ
⊤
k .

Therefore, we have

X⊥(X⊥)⊤ =

 r∑
k=j+1

cklkγ
⊤
k

 r∑
k=j+1

ckγkl
⊤
k

 =

r∑
k=j+1

c2klkγ
⊤
k γkl

⊤
k =

r∑
k=j+1

c2klkl
⊤
k .□
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3. (Prove Theorem A that we discussed in class.) Suppose X ∼ [0,Σ], Σ = ΓΛΓ⊤ with all λi > 0. Let
Γ(j) = (γ1, γ2, . . . , γj). Then

1. The best linear predictor of X in terms of Γ(j) is the projection of X onto the column space of Γ(j):

X̂ = Γ(j)Γ
⊤
(j)X =

j∑
i=1

yiγi,

where Y(j) = Γ⊤
(j)X.

Solution. The best linear predictor of X in terms of Γ(j) is the projection of X onto the column space
of Γ(j):

X̂ = Γ(j)(Γ
⊤
(j)Γ(j))

−1Γ⊤
(j)X = Γ(j)Γ

⊤
(j)X = Γ(j)Y(j) = (γ1, . . . , γj)

y1
...
yj

 =

j∑
i=1

yiγi.□

2. The residual X⊥ = X − X̂ has covariance matrix

Σ⊥
(j) =

p∑
i=j+1

λiγiγ
⊤
i

with trΣ⊥
(j) =

∑p
i=j+1 λi.

Solution. Assume Γ = (Γ(j),Γ(−j)) is the orthogonal matrix in the spectral decomposition of Σ. The
residual

X⊥ = X − X̂ =

p∑
i=1

yiγi −
j∑

i=1

yiγi =

p∑
i=j+1

yiγi = Γ(−j)Y(−j) = Γ(−j)Γ
⊤
(−j)X

has covariance matrix

Σ⊥
(j) = Γ(−j)Γ

⊤
(−j)ΣΓ(−j)Γ

⊤
(−j) = Γ(−j)Γ

⊤
(−j)ΓΛΓ

⊤Γ(−j)Γ
⊤
(−j) = Γ(−j)

(
0 0
0 Λ(j)

)
Γ⊤
(−j) =

p∑
i=j+1

λiγiγ
⊤
i ,

with

tr Σ⊥
(j) = tr

p∑
i=j+1

λiγiγ
⊤
i =

p∑
i=j+1

λitr(γ
⊤
i γi) =

p∑
i=j+1

λi.□

3. For any matrix Aj×p, let z = AX and X⊥
z = X − ΣXzΣ

−1
zz z. Show that

trΣ⊥
(j) = tr cov(X⊥) ≥

p∑
i=j+1

λi.

Solution. Since

ΣXz = E(XZ⊤) = E(XX⊤A⊤) = ΣA⊤, Σzz = E(ZZ⊤) = E(AXX⊤A⊤) = AΣA⊤,

the covariance of the residual is

Σ⊥
(j) = cov(X − ΣXzΣ

−1
zz z) = Σ− ΣXzΣ

−1
zz ΣzX = Σ− ΣA⊤(AΣA⊤)−1AΣ.

In order to show that

trΣ⊥
(j) = tr cov(X⊥) ≥

p∑
i=j+1

λi,
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we only need to show that

j∑
i=1

λi ≥ tr{ΣA⊤(AΣA⊤)−1AΣ} = tr{ΓΛΓ⊤A⊤(AΓΛΓ⊤A⊤)−1AΓΛΓ⊤} = tr{(AΓΛΓ⊤A⊤)−1AΓΛ2Γ⊤A⊤}.

Define C = AΓΛ1/2, and the above inequality reduces to

j∑
i=1

λi ≥ tr{(CC⊤)−1(CΛC⊤)} = tr{C⊤(CC⊤)−1CΛ} = tr(PCΛ),

where PC = C⊤(CC⊤)−1C is a projection matrix of rank j. The projection matrix has spectral

decomposition PC =
∑j

i=1 δiδ
⊤
i , where δi’s are unit vectors that are orthogonal. Therefore, the above

inequality further reduces to

j∑
i=1

λi ≥ tr

(
j∑

i=1

δiδ
⊤
i Λ

)
=

j∑
i=1

δ⊤i Λδi.

Let ∆p×p = (∆1,∆2)
T = (δ1, . . . , δj , δj+1, . . . , δp)

T = (δij) orthogonal matrix. (Adding p−j orthogonal
row vectors to complement δ1, . . . , δj to form orthogonal basis). Then.

j∑
i=1

δ⊤i Λδi =

p∑
k=1

(λk

j∑
i=1

δ2ik)

Also,

0 ≤
j∑

i=1

δ2ik ≤ 1,

p∑
k=1

j∑
i=1

δ2ik =

j∑
i=1

||δi||2 = j.

So the maximum is taken when
∑j

i=1 δ
2
ik = 1, for k ≤ j, equivalently, maximum is

∑j
i=1 λi

According to the fundamental lemma, δ⊤Λδ is maximize at e1 with value λ1; among the unit vectors
orthogonal to e1, δ

⊤Λδ is maximize at e2 with value λ2; and so on. Consequently, the right hand side
has maximum value

∑j
i=1 λi, corresponding to (δ1, . . . , δj) = (e1, . . . , ej). The conclusion follows.□

4. (Ridge regression) Hoerl and Kennard (1970) have proposed the method of ridge regression to improve
the accuracy of the parameter estimates in the regression model

y = Xβ + µ1+ u, u ∼ Nn(0, σ
2I).

Suppose the columns of X have been standardized to have mean 0 and variance 1. The ridge estimate of β
is defined by

β∗ = (X ′X + kI)−1X ′y,

where for given X, k ≥ 0 is a small fixed number.

1. Show that β∗ reduces to the OLS estimate β̂ = (X ′X)−1X ′y when k = 0.

Solution. When k = 0, we have β∗ = (X ′X)−1X ′y, and we need to show that this is the OLS
estimator for β.

Since X is standardized to have mean 0 and variance 1, we have 1⊤X = 0. Therefore, the OLS
estimator for (µ,β⊤)⊤ is(

µ̂

β̂

)
=

{(
1⊤

X⊤

)(
1 X

)}−1(
1⊤

X⊤

)
y =

(
n−1 0
0 (X⊤X)−1

)(
1⊤

X⊤

)
y =

(
ȳ

(X ′X)−1X ′y

)
.□
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2. Let X ′X = GLG′ be a spectral decomposition of X ′X and let W = XG be the principal compo-
nent transformation given in (8.8.2). If α = G′β represents the parameter vector for the principal
components, show that the ridge estimate α∗ of α can be simply related to the OLS estimate α̂ by

α∗
j =

lj
lj + k

α̂j , j = 1, . . . , p,

and hence
β∗ = GDG′β̂, where D = diag {li/(li + k)} .

Solution. Denote γ = W ′y = G′X ′y. The ridge estimator of α is

α∗ = G′(X ′X + kI)−1X ′y = G′(GLG′ + kGG′)−1X ′y = (L+ kI)−1G′X ′y =

γ1/(l1 + k)
...

γp/(lp + k)

X ′y.

The OLS estimator of α is the ridge estimator at k = 0, i.e.,

α̂ =

γ1/l1
...

γp/lp

 .

Therefore, we have

α∗
j =

lj
lj + k

α̂j , j = 1, . . . , p,

or, equivalently, α∗ = Dα̂. We have
Gα∗ = GDG′Gα̂,

and by definition the α = G′β we further have

β∗ = GDG′β̂.□

3. One measure of the accuracy of β∗ is given by the trace mean square error,

ϕ(k) = trE{(β∗ − β)(β∗ − β)′} =

p∑
i=1

E(β∗
i − βi)

2.

Show that we can write ϕ(k) = γ1(k) + γ2(k), where

γ1(k) =

p∑
i=1

V (β∗
i ) = σ2

p∑
i=1

li
(li + k)2

represents the sum of the variances of β∗
i , and

γ2(k) =

p∑
i=1

{E(β∗
i − βi)}2 = k2

p∑
i=1

α2
i

(li + k)2

represents the sum of the squared biases of β∗
i .

Solution. We have the following bias2-variance decomposition:

ϕ(k) = trE{(β∗ − β)(β∗ − β)′} = tr{(Eβ∗ − β)(Eβ∗ − β)′}+ tr cov(β∗),

where the first term is the bias2, i.e.,

γ2(k) = tr{(Eβ∗ − β)(Eβ∗ − β)′} =

p∑
i=1

{E(β∗
i − βi)}2,
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and the second term is the variance, i.e.,

γ1(k) = tr cov(β∗) =

p∑
i=1

V (β∗
i ).

Since

Eβ∗ − β = GDα−Gα = G(D − I)α = −kG

α1/(l1 + k)
...

αp/(lp + k)

 ,

we have

γ2(k) = k2tr

(α1/(l1 + k) · · · αp/(lp + k)
)α1/(l1 + k)

...
αp/(lp + k)


 = k2

p∑
i=1

αi

(li + k)2
.

Since

cov(β∗) = σ2GDG′(X ′X)−1GDG′ = σ2GDG′(GLG′)−1GDG′ = σ2Gdiag

{
l1

(l1 + k)2
, · · · , lp

(lp + k)2

}
G′,

we have

γ1(k) = σ2tr

[
Gdiag

{
l1

(l1 + k)2
, · · · , lp

(lp + k)2

}
G′
]
= σ2

p∑
i=1

li
(li + k)2

.

4. Show that the first derivative of γ1(k) and γ2(k) at 0 are

γ′
1(0) = −2σ2

∑
1/l2i , γ′

2(0) = 0.

Hence there exist values of k > 0 for which ϕ(k) < ϕ(0), that is for which β∗ has smaller trace

mean square error than β̂. Note that the increase in accuracy is most pronounced when some of the
eigenvalues li are near 0, that is, when the columns of X are nearly colinear. However, the optimal
choice for k depends on the unknown value of β = Gα.

Solution. The first derivative is γ1(k) is

γ′
1(k) = −2σ2

p∑
i=1

li
(li + k)3

,

and therefore,

γ′
1(0) = −2σ2

p∑
i=1

l−2
i .

The first derivative of γ2(k) is

γ′
2(k) = −2k2

p∑
i=1

αi

(li + k)3
+ 2k

p∑
i=1

αi

(li + k)2
,

and therefore,
γ′
2(0) = 0.

Other conclusions follow straightforwardly. □
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