ISYE 7405

Homework 5

Jacob Aguirre
Email: aguirre@gatech.edu
Instructor: Dr. Shihao Yang

1. Repeat the student score data PCA calculations and reproduce the following figures that we saw in class.

Solution. R code is shown below.

```
data_hw3 = read.table("scoredata.txt", header = FALSE)
data_hw3 = as.matrix(data_hw3)
data_hw3 = scale(data_hw3, center = TRUE, scale = FALSE)
S = cov(data_hw3)
eigen.S = -eigen(S, symmetric = TRUE)$vectors
eigen.S[, 1:2]
pdf("fg1_hw3.pdf", height = 6, width = 6)
plot(eigen.S[,2], type = "b", lty = 2, pch = "2",
    xlab = "coordinate", ylab = "eigen-vector")
lines(eigen.S[,1], type = "b", pch = "1")
abline(h=0, col = "grey")
dev.off()
pdf("fg2_hw3.pdf", height = 6, width = 6)
total = data_hw3%**%eigen.S[,1]
diff = data_hw3%*%eigen.S[,2]
plot(diff~total, type = "n")
text(total, diff, label = 1:dim(data_hw3)[1], cex = 0.4)
abline(h = 0, col = "grey", lty = 2)
abline(v = 0, col = "grey", lty = 2)
dev.off()
```

2. Let $X_{p \times n}$ be a data matrix. Assume that X has row means 0 . Let $Y_{(j)}=L_{(j)}^{T} X$ (recall we introduced $L_{(j)}$ through the SVD of $\left.X\right)$.
3. Calculate the $(p+j) \times(p+j)$ matrix $\binom{X}{Y_{(j)}}\left(\begin{array}{ll}X^{T} & Y_{(j)}^{T}\end{array}\right)$

Solution. We have

$$
\binom{X}{Y_{(j)}}\left(\begin{array}{ll}
X^{T} & Y_{(j)}^{T}
\end{array}\right)=\left(\begin{array}{cc}
X X^{\top} & X Y_{(j)}^{\top} \\
Y_{(j)} X^{\top} & Y_{(j)} Y_{(j)}^{\top}
\end{array}\right)=\left(\begin{array}{cc}
X X^{\top} & X X^{\top} L_{(j)} \\
L_{(j)}^{\top} X X^{\top} & L_{(j)}^{\top} X X^{\top} L_{(j)}
\end{array}\right) .
$$

Since

$$
X X^{\top} L_{(j)}=L C^{2} L^{\top} L_{(j)}=L C^{2}\binom{I_{j}}{0}=L\binom{C_{(j)}^{2}}{0}=L_{(j)} C_{(j)}^{2}
$$

we have

$$
\binom{X}{Y_{(j)}}\left(\begin{array}{ll}
X^{T} & Y_{(j)}^{T}
\end{array}\right)=\left(\begin{array}{cc}
L C^{2} L^{\top} & L_{(j)} C_{(j)}^{2} \\
C_{(j)}^{2} L_{(j)}^{\top} & C_{(j)}^{2}
\end{array}\right)
$$

2. Calculate \widehat{X}, the projection of X row by row into $L_{\text {row }}\left(Y_{(j)}\right)$

Solution. The projection of X row by tow into $L_{\text {row }}\left(Y_{(j)}\right)$ is

$$
\begin{aligned}
\widehat{X} & =X Y_{(j)}^{\top}\left(Y_{(j)} Y_{(j)}^{\top}\right)^{-1} Y_{(j)}=X X^{\top} L_{(j)}\left(L_{(j)}^{\top} X X^{\top} L_{(j)}\right)^{-1} L_{(j)}^{\top} X \\
& =X X^{\top} L_{(j)}\left(L_{(j)}^{\top} L C^{2} L^{\top} L_{(j)}\right)^{-1} L_{(j)}^{\top} X \\
& =L C^{2} L^{\top} L_{(j)} C_{(j)}^{-2} L_{(j)}^{\top} L C R^{\top} \\
& =L C^{2}\binom{I_{j}}{0} C_{(j)}^{-2}\left(\begin{array}{ll}
I_{j} & 0
\end{array}\right) C R^{\top} \\
& =L\left(\begin{array}{cc}
C_{(j)} & 0 \\
0 & 0
\end{array}\right) R^{\top} \\
& =L_{(j)} C_{(j)} R_{(j)}^{\top} \\
& =\sum_{k=1}^{j} c_{k} l_{l} \gamma_{k}^{\top} . \square
\end{aligned}
$$

3. Calculate $X^{\perp}\left(X^{\perp}\right)^{T}$, where $X^{\perp}=X-\widehat{X}$

Solution. According to SVD of X :

$$
X=L C R^{\top}=\sum_{k=1}^{r} c_{k} l_{l} \gamma_{k}^{\top}
$$

we have

$$
X^{\perp}=X-\widehat{X}=\sum_{k=j+1}^{r} c_{k} l_{k} \gamma_{k}^{\top}
$$

Therefore, we have

$$
X^{\perp}\left(X^{\perp}\right)^{\top}=\left(\sum_{k=j+1}^{r} c_{k} l_{k} \gamma_{k}^{\top}\right)\left(\sum_{k=j+1}^{r} c_{k} \gamma_{k} l_{k}^{\top}\right)=\sum_{k=j+1}^{r} c_{k}^{2} l_{k} \gamma_{k}^{\top} \gamma_{k} l_{k}^{\top}=\sum_{k=j+1}^{r} c_{k}^{2} l_{k} l_{k}^{\top} . \square
$$

3. (Prove Theorem A that we discussed in class.) Suppose $X \sim[0, \Sigma], \Sigma=\Gamma \Lambda \Gamma^{\top}$ with all $\lambda_{i}>0$. Let $\Gamma_{(j)}=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{j}\right)$. Then
4. The best linear predictor of X in terms of $\Gamma_{(j)}$ is the projection of X onto the column space of $\Gamma_{(j)}$:

$$
\widehat{X}=\Gamma_{(j)} \Gamma_{(j)}^{\top} X=\sum_{i=1}^{j} y_{i} \gamma_{i}
$$

where $Y_{(j)}=\Gamma_{(j)}^{\top} X$.
Solution. The best linear predictor of X in terms of $\Gamma_{(j)}$ is the projection of X onto the column space of $\Gamma_{(j)}$:

$$
\widehat{X}=\Gamma_{(j)}\left(\Gamma_{(j)}^{\top} \Gamma_{(j)}\right)^{-1} \Gamma_{(j)}^{\top} X=\Gamma_{(j)} \Gamma_{(j)}^{\top} X=\Gamma_{(j)} Y_{(j)}=\left(\gamma_{1}, \ldots, \gamma_{j}\right)\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{j}
\end{array}\right)=\sum_{i=1}^{j} y_{i} \gamma_{i} .
$$

2. The residual $X^{\perp}=X-\widehat{X}$ has covariance matrix

$$
\Sigma_{(j)}^{\perp}=\sum_{i=j+1}^{p} \lambda_{i} \gamma_{i} \gamma_{i}^{\top}
$$

with $\operatorname{tr} \Sigma_{(j)}^{\perp}=\sum_{i=j+1}^{p} \lambda_{i}$.
Solution. Assume $\Gamma=\left(\Gamma_{(j)}, \Gamma_{(-j)}\right)$ is the orthogonal matrix in the spectral decomposition of Σ. The residual

$$
X^{\perp}=X-\widehat{X}=\sum_{i=1}^{p} y_{i} \gamma_{i}-\sum_{i=1}^{j} y_{i} \gamma_{i}=\sum_{i=j+1}^{p} y_{i} \gamma_{i}=\Gamma_{(-j)} Y_{(-j)}=\Gamma_{(-j)} \Gamma_{(-j)}^{\top} X
$$

has covariance matrix
$\Sigma_{(j)}^{\perp}=\Gamma_{(-j)} \Gamma_{(-j)}^{\top} \Sigma \Gamma_{(-j)} \Gamma_{(-j)}^{\top}=\Gamma_{(-j)} \Gamma_{(-j)}^{\top} \Gamma \Lambda \Gamma^{\top} \Gamma_{(-j)} \Gamma_{(-j)}^{\top}=\Gamma_{(-j)}\left(\begin{array}{cc}0 & 0 \\ 0 & \Lambda_{(j)}\end{array}\right) \Gamma_{(-j)}^{\top}=\sum_{i=j+1}^{p} \lambda_{i} \gamma_{i} \gamma_{i}^{\top}$,
with

$$
\operatorname{tr} \Sigma_{(j)}^{\perp}=\operatorname{tr} \sum_{i=j+1}^{p} \lambda_{i} \gamma_{i} \gamma_{i}^{\top}=\sum_{i=j+1}^{p} \lambda_{i} \operatorname{tr}\left(\gamma_{i}^{\top} \gamma_{i}\right)=\sum_{i=j+1}^{p} \lambda_{i} . \square
$$

3. For any matrix $A_{j \times p}$, let $z=A X$ and $X_{z}^{\perp}=X-\Sigma_{X z} \Sigma_{z z}^{-1} z$. Show that

$$
\operatorname{tr} \Sigma_{(j)}^{\perp}=\operatorname{tr} \operatorname{cov}\left(X^{\perp}\right) \geq \sum_{i=j+1}^{p} \lambda_{i} .
$$

Solution. Since

$$
\Sigma_{X z}=E\left(X Z^{\top}\right)=E\left(X X^{\top} A^{\top}\right)=\Sigma A^{\top}, \quad \Sigma_{z z}=E\left(Z Z^{\top}\right)=E\left(A X X^{\top} A^{\top}\right)=A \Sigma A^{\top},
$$

the covariance of the residual is

$$
\Sigma_{(j)}^{\perp}=\operatorname{cov}\left(X-\Sigma_{X z} \Sigma_{z z}^{-1} z\right)=\Sigma-\Sigma_{X z} \Sigma_{z z}^{-1} \Sigma_{z X}=\Sigma-\Sigma A^{\top}\left(A \Sigma A^{\top}\right)^{-1} A \Sigma .
$$

In order to show that

$$
\operatorname{tr} \Sigma_{(j)}^{\perp}=\operatorname{tr} \operatorname{cov}\left(X^{\perp}\right) \geq \sum_{i=j+1}^{p} \lambda_{i}
$$

we only need to show that

$$
\sum_{i=1}^{j} \lambda_{i} \geq \operatorname{tr}\left\{\Sigma A^{\top}\left(A \Sigma A^{\top}\right)^{-1} A \Sigma\right\}=\operatorname{tr}\left\{\Gamma \Lambda \Gamma^{\top} A^{\top}\left(A \Gamma \Lambda \Gamma^{\top} A^{\top}\right)^{-1} A \Gamma \Lambda \Gamma^{\top}\right\}=\operatorname{tr}\left\{\left(A \Gamma \Lambda \Gamma^{\top} A^{\top}\right)^{-1} A \Gamma \Lambda^{2} \Gamma^{\top} A^{\top}\right\}
$$

Define $C=A \Gamma \Lambda^{1 / 2}$, and the above inequality reduces to

$$
\sum_{i=1}^{j} \lambda_{i} \geq \operatorname{tr}\left\{\left(C C^{\top}\right)^{-1}\left(C \Lambda C^{\top}\right)\right\}=\operatorname{tr}\left\{C^{\top}\left(C C^{\top}\right)^{-1} C \Lambda\right\}=\operatorname{tr}\left(P_{C} \Lambda\right)
$$

where $P_{C}=C^{\top}\left(C C^{\top}\right)^{-1} C$ is a projection matrix of rank j. The projection matrix has spectral decomposition $P_{C}=\sum_{i=1}^{j} \delta_{i} \delta_{i}^{\top}$, where δ_{i} 's are unit vectors that are orthogonal. Therefore, the above inequality further reduces to

$$
\sum_{i=1}^{j} \lambda_{i} \geq \operatorname{tr}\left(\sum_{i=1}^{j} \delta_{i} \delta_{i}^{\top} \Lambda\right)=\sum_{i=1}^{j} \delta_{i}^{\top} \Lambda \delta_{i}
$$

Let $\Delta_{p \times p}=\left(\Delta_{1}, \Delta_{2}\right)^{T}=\left(\delta_{1}, \ldots, \delta_{j}, \delta_{j+1}, \ldots, \delta_{p}\right)^{T}=\left(\delta_{i j}\right)$ orthogonal matrix. (Adding $p-j$ orthogonal row vectors to complement $\delta_{1}, \ldots, \delta_{j}$ to form orthogonal basis). Then.

$$
\sum_{i=1}^{j} \delta_{i}^{\top} \Lambda \delta_{i}=\sum_{k=1}^{p}\left(\lambda_{k} \sum_{i=1}^{j} \delta_{i k}^{2}\right)
$$

Also,

$$
0 \leq \sum_{i=1}^{j} \delta_{i k}^{2} \leq 1, \sum_{k=1}^{p} \sum_{i=1}^{j} \delta_{i k}^{2}=\sum_{i=1}^{j}\left\|\delta_{i}\right\|^{2}=j
$$

So the maximum is taken when $\sum_{i=1}^{j} \delta_{i k}^{2}=1$, for $k \leq j$, equivalently, maximum is $\sum_{i=1}^{j} \lambda_{i}$
According to the fundamental lemma, $\delta^{\top} \Lambda \delta$ is maximize at e_{1} with value λ_{1}; among the unit vectors orthogonal to $e_{1}, \delta^{\top} \Lambda \delta$ is maximize at e_{2} with value λ_{2}; and so on. Consequently, the right hand side has maximum value $\sum_{i=1}^{j} \lambda_{i}$, corresponding to $\left(\delta_{1}, \ldots, \delta_{j}\right)=\left(e_{1}, \ldots, e_{j}\right)$. The conclusion follows.
4. (Ridge regression) Hoerl and Kennard (1970) have proposed the method of ridge regression to improve the accuracy of the parameter estimates in the regression model

$$
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\mu \mathbf{1}+\boldsymbol{u}, \quad \boldsymbol{u} \sim N_{n}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right)
$$

Suppose the columns of \boldsymbol{X} have been standardized to have mean 0 and variance 1. The ridge estimate of $\boldsymbol{\beta}$ is defined by

$$
\boldsymbol{\beta}^{*}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}+k \boldsymbol{I}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y}
$$

where for given $\boldsymbol{X}, k \geq 0$ is a small fixed number.

1. Show that $\boldsymbol{\beta}^{*}$ reduces to the OLS estimate $\widehat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y}$ when $k=0$.

Solution. When $k=0$, we have $\boldsymbol{\beta}^{*}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y}$, and we need to show that this is the OLS estimator for $\boldsymbol{\beta}$.
Since \boldsymbol{X} is standardized to have mean 0 and variance 1 , we have $\mathbf{1}^{\top} \boldsymbol{X}=0$. Therefore, the OLS estimator for $\left(\mu, \boldsymbol{\beta}^{\boldsymbol{\top}}\right)^{\top}$ is

$$
\binom{\widehat{\mu}}{\widehat{\boldsymbol{\beta}}}=\left\{\binom{\mathbf{1}^{\top}}{\boldsymbol{X}^{\top}}\left(\begin{array}{ll}
\mathbf{1} & \boldsymbol{X}
\end{array}\right)\right\}^{-1}\binom{\mathbf{1}^{\top}}{\boldsymbol{X}^{\top}} \boldsymbol{y}=\left(\begin{array}{cc}
n^{-1} & 0 \\
0 & \left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}
\end{array}\right)\binom{\mathbf{1}^{\top}}{\boldsymbol{X}^{\top}} \boldsymbol{y}=\binom{\bar{y}}{\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y}}
$$

2. Let $\boldsymbol{X}^{\prime} \boldsymbol{X}=\boldsymbol{G} \boldsymbol{L} \boldsymbol{G}^{\prime}$ be a spectral decomposition of $\boldsymbol{X}^{\prime} \boldsymbol{X}$ and let $\boldsymbol{W}=\boldsymbol{X} \boldsymbol{G}$ be the principal component transformation given in (8.8.2). If $\boldsymbol{\alpha}=\boldsymbol{G}^{\prime} \boldsymbol{\beta}$ represents the parameter vector for the principal components, show that the ridge estimate $\boldsymbol{\alpha}^{*}$ of $\boldsymbol{\alpha}$ can be simply related to the OLS estimate $\widehat{\boldsymbol{\alpha}}$ by

$$
\alpha_{j}^{*}=\frac{l_{j}}{l_{j}+k} \widehat{\alpha}_{j}, \quad j=1, \ldots, p
$$

and hence

$$
\boldsymbol{\beta}^{*}=\boldsymbol{G} \boldsymbol{D} \boldsymbol{G}^{\prime} \widehat{\boldsymbol{\beta}}, \text { where } \boldsymbol{D}=\operatorname{diag}\left\{l_{i} /\left(l_{i}+k\right)\right\}
$$

Solution. Denote $\gamma=\boldsymbol{W}^{\prime} y=\boldsymbol{G}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{y}$. The ridge estimator of α is $\boldsymbol{\alpha}^{*}=\boldsymbol{G}^{\prime}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}+k \boldsymbol{I}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y}=\boldsymbol{G}^{\prime}\left(\boldsymbol{G} \boldsymbol{L} \boldsymbol{G}^{\prime}+k \boldsymbol{G} \boldsymbol{G}^{\prime}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y}=(\boldsymbol{L}+k \boldsymbol{I})^{-1} \boldsymbol{G}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{y}=\left(\begin{array}{c}\gamma_{1} /\left(l_{1}+k\right) \\ \vdots \\ \gamma_{p} /\left(l_{p}+k\right)\end{array}\right) X^{\prime} y$.

The OLS estimator of α is the ridge estimator at $k=0$, i.e.,

$$
\widehat{\alpha}=\left(\begin{array}{c}
\gamma_{1} / l_{1} \\
\vdots \\
\gamma_{p} / l_{p}
\end{array}\right)
$$

Therefore, we have

$$
\alpha_{j}^{*}=\frac{l_{j}}{l_{j}+k} \widehat{\alpha}_{j}, \quad j=1, \ldots, p
$$

or, equivalently, $\boldsymbol{\alpha}^{*}=\boldsymbol{D} \widehat{\boldsymbol{\alpha}}$. We have

$$
\boldsymbol{G} \boldsymbol{\alpha}^{*}=\boldsymbol{G} \boldsymbol{D} \boldsymbol{G}^{\prime} \boldsymbol{G} \widehat{\boldsymbol{\alpha}}
$$

and by definition the $\boldsymbol{\alpha}=\boldsymbol{G}^{\prime} \boldsymbol{\beta}$ we further have

$$
\boldsymbol{\beta}^{*}=\boldsymbol{G} \boldsymbol{D} \boldsymbol{G}^{\prime} \widehat{\boldsymbol{\beta}} . \square
$$

3. One measure of the accuracy of $\boldsymbol{\beta}^{*}$ is given by the trace mean square error,

$$
\phi(k)=\operatorname{tr} E\left\{\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}\right)\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}\right)^{\prime}\right\}=\sum_{i=1}^{p} E\left(\beta_{i}^{*}-\beta_{i}\right)^{2}
$$

Show that we can write $\phi(k)=\gamma_{1}(k)+\gamma_{2}(k)$, where

$$
\gamma_{1}(k)=\sum_{i=1}^{p} V\left(\beta_{i}^{*}\right)=\sigma^{2} \sum_{i=1}^{p} \frac{l_{i}}{\left(l_{i}+k\right)^{2}}
$$

represents the sum of the variances of β_{i}^{*}, and

$$
\gamma_{2}(k)=\sum_{i=1}^{p}\left\{E\left(\beta_{i}^{*}-\beta_{i}\right)\right\}^{2}=k^{2} \sum_{i=1}^{p} \frac{\alpha_{i}^{2}}{\left(l_{i}+k\right)^{2}}
$$

represents the sum of the squared biases of β_{i}^{*}.
Solution. We have the following bias ${ }^{2}$-variance decomposition:

$$
\phi(k)=\operatorname{tr} E\left\{\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}\right)\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}\right)^{\prime}\right\}=\operatorname{tr}\left\{\left(E \boldsymbol{\beta}^{*}-\boldsymbol{\beta}\right)\left(E \boldsymbol{\beta}^{*}-\boldsymbol{\beta}\right)^{\prime}\right\}+\operatorname{tr} \operatorname{cov}\left(\boldsymbol{\beta}^{*}\right)
$$

where the first term is the bias ${ }^{2}$, i.e.,

$$
\gamma_{2}(k)=\operatorname{tr}\left\{\left(E \boldsymbol{\beta}^{*}-\boldsymbol{\beta}\right)\left(E \boldsymbol{\beta}^{*}-\boldsymbol{\beta}\right)^{\prime}\right\}=\sum_{i=1}^{p}\left\{E\left(\beta_{i}^{*}-\beta_{i}\right)\right\}^{2}
$$

and the second term is the variance, i.e.,

$$
\gamma_{1}(k)=\operatorname{tr} \operatorname{cov}\left(\boldsymbol{\beta}^{*}\right)=\sum_{i=1}^{p} V\left(\beta_{i}^{*}\right) .
$$

Since

$$
E \boldsymbol{\beta}^{*}-\boldsymbol{\beta}=\boldsymbol{G} \boldsymbol{D} \boldsymbol{\alpha}-\boldsymbol{G} \boldsymbol{\alpha}=\boldsymbol{G}(\boldsymbol{D}-\boldsymbol{I}) \boldsymbol{\alpha}=-k \boldsymbol{G}\left(\begin{array}{c}
\alpha_{1} /\left(l_{1}+k\right) \\
\vdots \\
\alpha_{p} /\left(l_{p}+k\right)
\end{array}\right)
$$

we have

$$
\gamma_{2}(k)=k^{2} \operatorname{tr}\left\{\left(\begin{array}{lll}
\alpha_{1} /\left(l_{1}+k\right) & \cdots & \left.\left.\alpha_{p} /\left(l_{p}+k\right)\right)\left(\begin{array}{c}
\alpha_{1} /\left(l_{1}+k\right) \\
\vdots \\
\alpha_{p} /\left(l_{p}+k\right)
\end{array}\right)\right\}=k^{2} \sum_{i=1}^{p} \frac{\alpha_{i}}{\left(l_{i}+k\right)^{2}} ~ . ~ . ~
\end{array}\right.\right.
$$

Since
$\operatorname{cov}\left(\boldsymbol{\beta}^{*}\right)=\sigma^{2} \boldsymbol{G} \boldsymbol{D} \boldsymbol{G}^{\prime}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{G} \boldsymbol{D} \boldsymbol{G}^{\prime}=\sigma^{2} \boldsymbol{G} \boldsymbol{D} \boldsymbol{G}^{\prime}\left(\boldsymbol{G} \boldsymbol{L} \boldsymbol{G}^{\prime}\right)^{-1} \boldsymbol{G} \boldsymbol{D} \boldsymbol{G}^{\prime}=\sigma^{2} \boldsymbol{G} \operatorname{diag}\left\{\frac{l_{1}}{\left(l_{1}+k\right)^{2}}, \cdots, \frac{l_{p}}{\left(l_{p}+k\right)^{2}}\right\} \boldsymbol{G}^{\prime}$,
we have

$$
\gamma_{1}(k)=\sigma^{2} \operatorname{tr}\left[\boldsymbol{G} \operatorname{diag}\left\{\frac{l_{1}}{\left(l_{1}+k\right)^{2}}, \cdots, \frac{l_{p}}{\left(l_{p}+k\right)^{2}}\right\} \boldsymbol{G}^{\prime}\right]=\sigma^{2} \sum_{i=1}^{p} \frac{l_{i}}{\left(l_{i}+k\right)^{2}} .
$$

4. Show that the first derivative of $\gamma_{1}(k)$ and $\gamma_{2}(k)$ at 0 are

$$
\gamma_{1}^{\prime}(0)=-2 \sigma^{2} \sum 1 / l_{i}^{2}, \quad \gamma_{2}^{\prime}(0)=0
$$

Hence there exist values of $k>0$ for which $\phi(k)<\phi(0)$, that is for which $\boldsymbol{\beta}^{*}$ has smaller trace mean square error than $\widehat{\boldsymbol{\beta}}$. Note that the increase in accuracy is most pronounced when some of the eigenvalues l_{i} are near 0 , that is, when the columns of \boldsymbol{X} are nearly colinear. However, the optimal choice for k depends on the unknown value of $\boldsymbol{\beta}=\boldsymbol{G} \boldsymbol{\alpha}$.
Solution. The first derivative is $\gamma_{1}(k)$ is

$$
\gamma_{1}^{\prime}(k)=-2 \sigma^{2} \sum_{i=1}^{p} \frac{l_{i}}{\left(l_{i}+k\right)^{3}},
$$

and therefore,

$$
\gamma_{1}^{\prime}(0)=-2 \sigma^{2} \sum_{i=1}^{p} l_{i}^{-2}
$$

The first derivative of $\gamma_{2}(k)$ is

$$
\gamma_{2}^{\prime}(k)=-2 k^{2} \sum_{i=1}^{p} \frac{\alpha_{i}}{\left(l_{i}+k\right)^{3}}+2 k \sum_{i=1}^{p} \frac{\alpha_{i}}{\left(l_{i}+k\right)^{2}}
$$

and therefore,

$$
\gamma_{2}^{\prime}(0)=0
$$

Other conclusions follow straightforwardly.

