ISYE 7405

Homework 5

Jacob Aguirre Email: aguirre@gatech.edu
Instructor: Dr. Shihao Yang

1. Repeat the student score data PCA calculations and reproduce the following figures that we saw in
class.
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Solution. R code is shown below.

data_hw3 read.table("scoredata.txt", header = FALSE)
data_hw3 = as.matrix(data_hw3)

data_hw3 = scale(data_hw3, center = TRUE, scale = FALSE)
S = cov(data_hw3)
eigen.S = -eigen(S, symmetric = TRUE)$vectors

eigen.S[, 1:2]

pdf ("fgl_hw3.pdf", height = 6, width = 6)

plot(eigen.S[,2], type = "b", 1ty = 2, pch = "2",
xlab = "coordinate", ylab = "eigen-vector")

lines(eigen.S[,1], type = "b", pch = "1")

abline(h=0, col = "grey")

dev.off ()

pdf ("fg2_hw3.pdf", height = 6, width = 6)

total = data_hw3%*J%eigen.S[,1]

diff = data_hw3¥%xJeigen.S[,2]

plot(diff~total, type = "n")

text(total, diff, label = 1:dim(data_hw3)[1], cex = 0.4)
abline(h = 0, col = "grey", lty = 2)

abline(v = 0, col = "grey", 1ty = 2)

dev.off ()
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2. Let X,x, be a data matrix. Assume that X has row means 0. Let Y ) = LE)X (recall we introduced
L(;y through the SVD of X).

1. Calculate the (p+ j) x (p + j) matrix < X > (XT Yg))
Y)

Solution. We have

X) oo XXT XY, ( bodl XX "L
X Y = J)r = T T T T .
(Ym ( 5) (YmXT YY) L XX L XX L)
Since
XX Loy = LC?LT Loy = Lo (B) = 1 ) =L »C?
o= G = 0= 0 ) = ot
we have

X T T LC?LT L(j)C(Q.)
X Y. ) = 2.0
<Y(j)) ( (3)) (C(Zj)L(Tj) %)

2. Calculate )?, the projection of X row by row into Lyow (Y(;))
Solution. The projection of X row by tow into Lyow(Y(;)) is
T T Ty\—1 T T T —17T
X = XY (Y)Y Yy = XX Lo (Ly XX L))~ L,
T T 27T “17T
_ 27T —27T T
= LC*L L(j)C(j)L(j)LCR

X

_ 2 (L ~—2 (7. T
- e () e ven
_ Ciyy 0 ot
_ L< 0 0 g

T
= LypCyR;

J

= Z Ckll"y];r.D

k=1

3. Calculate X+ (X1)T where X+ = X — X
Solution. According to SVD of X:

X = LCRT = chll’y,j,
k=1

we have
-

Xt=X-X= ) al.

k=j+1
Therefore, we have
I T i ™
X+(xH' = Z el Z aly | = Z ALy wly = Z il .0
k=j+1 k=j+1 k=j+1 k=j+1



3. (Prove Theorem A that we discussed in class.) Suppose X ~ [0,%], ¥ = TAT'T with all \; > 0. Let
F(]) = (71)727 < 7'7]) Then

1. The best linear predictor of X in terms of I'(;) is the projection of X onto the column space of I'(;y:

J
5% T
X =Tpl{HX = v,
i=1

where Y(j) = I‘E;)X.

Solution. The best linear predictor of X in terms of I is the projection of X onto the column space

yi i
e T —1pT T .
X =T GG T THX =TI X =TeYe = (neom) | 1 = 2wt
Yj
2. The residual X+ = X — X has covariance matrix
P
= > A
i=j+1
with trZ(L) = f:j+1 Ai-
Solution. Assume I' = (I';),I'(_;)) is the orthogonal matrix in the spectral decomposition of ¥. The
residual .
R P J P
Xt=X-X=) ymi—> yni= ) =LYy =TI X
i=1 i=1 i=j+1
has covariance matrix
S5y =Tepl LSyl =Tyl TANT Dy, =T 00 A
5 =Tl LT Ly =T Tl =Tenlg a Z T

with

p P P
) =t > Nyl = Y At = Y O

i=j+1 i=j+1 i=j+1
3. For any matrix A;x,, let z = AX and X; = X — ¥x,%_'2. Show that
trE(]) = tr cov(X1) > Z Ai-
i
Solution. Since
Yx.=FBXZ")=E(XXTAT)=%A", %..=EZZ")=E(AXXTAT)=AxA",
the covariance of the residual is
53y = cov(X — Bx.512) = £ — Ex. 8 8.x =L - TAT(ATAT) AL,

In order to show that

trE(]) = tr cov( XJ‘ Z Ais
i=j+1



we only need to show that
J
Z > tr{SAT(AZAT)1AS} = tr{TAT TAT(ATAT TAT) " YAPAT T} = tr{(ATAT' TAT)"1ATA?T T AT},
Define C' = AT'A'/2, and the above inequality reduces to
J
Z > tr{(CCT)™HCACT)} = tr{CT(CCT)"LCA} = tr(PcA),

where Po = CT(CCT)~'C is a projection matrix of rank j. The projection matrix has spectral
decomposition Po = >7_, 51'5;'— , where d;’s are unit vectors that are orthogonal. Therefore, the above
inequality further reduces to

Let Apxp = (A1, A0)T = (61,...,0;,0;41,.-.,0,)T = (0;;) orthogonal matrix. (Adding p—j orthogonal
row vectors to complement ¢y, ...,d; to form orthogonal basis). Then.

iﬁm:fwi%)
=1 k=1 =1
Also,

; .
0<> 65 <1 ZZ% —ZII(%IP =
=1 =1

k=1 1i=1
So the maximum is taken when Zgzl 62, =1, for k < j, equivalently, maximum is 23:1 A

According to the fundamental lemma, 6 ' AJ is maximize at e; with value \;; among the unit vectors
orthogonal to e1, 6 ' Ad is maximize at ey with value A2; and so on. Consequently, the right hand side
has maximum value ) 7_, \;, corresponding to (d1,...,8;) = (e1,...,e;). The conclusion follows.OJ

4. (Ridge regression) Hoerl and Kennard (1970) have proposed the method of ridge regression to improve
the accuracy of the parameter estimates in the regression model

y:X,B+M1+U, uNNn(0702I)'

Suppose the columns of X have been standardized to have mean 0 and variance 1. The ridge estimate of 3
is defined by
B = (X'X + kD) X'y,

where for given X, k > 0 is a small fixed number.

1. Show that 8* reduces to the OLS estimate 8 = (X'X) 1 X'y when k = 0.

Solution. When k = 0, we have 8* = (X'X) ! X'y, and we need to show that this is the OLS
estimator for 3.

Since X is standardized to have mean 0 and variance 1, we have 1T X = 0. Therefore, the OLS

estimator for (u, 37)7 is
_(nt 0 1" _ ] 0
Yy=1 o (XTXx)1 xT)Y= (X'X)1X'y)"

(G)-{G) e =} ()



2. Let X’X = GLG’ be a spectral decomposition of X’X and let W = X G be the principal compo-
nent transformation given in (8.8.2). If &« = G’ represents the parameter vector for the principal
components, show that the ridge estimate a* of a can be simply related to the OLS estimate & by

o, = ) Qy, jzla"'7pa
and hence R
B* = GDG'B, where D = diag{l;/(l; + k)} .
Solution. Denote v = W'y = G’ X'y. The ridge estimator of « is

Y1/ (l + k)
o =G (X'X+kI)'X'y=G'(GLG' + kGG ) ' X'y = (L+ kI)"'G' X'y = : X'y.
%ﬂ/(lp + k)

The OLS estimator of « is the ridge estimator at k£ =0, i.e.,

7/l
a= :
To/lp
Therefore, we have
Lj
t = a; 1,...
l] +kaj7 J ) 2

or, equivalently, a* = Da. We have
Go* = GDG'Ga,

and by definition the a = G’3 we further have

B* = GDG'B.O

3. One measure of the accuracy of 3* is given by the trace mean square error,

P
(k) = trE{(8" = B)(B" — B} = Y _ E(B; — B:)*.
i=1
Show that we can write ¢(k) = v1(k) + v2(k), where
P , P l;
'71(]4?) = ;V(ﬂz) = - (lz T k)2
represents the sum of the variances of 3, and
- 2 2 - af
72(k) = ;{E(@- — B =k ; e

represents the sum of the squared biases of ;.

Solution. We have the following bias?-variance decomposition:

¢(k) = trE{(B" — B)(B" — B)'} = tr{(EB" — B)(EB" — B)'} + tr cov(B"),

where the first term is the bias?, i.e.,

(k) = tr{(EB* — B)(EB* — B)'} =Y _{E(B; — B},

=1



and the second term is the variance, i.e.,

p
(k) = trcov(B%) =Y V(B;)
i=1
Since
al/(h + k‘)
EB*-B=GDa-Ga=G(D —-I)a=-kG ,
op/(lp + k)
we have
ar/(ly + k) » o
Yo(k) = k*tr Q (ar/(Li+k) - ap/(ly +F)) : =Ky m
ap /(L + k) =
Since

cov(B*) = o?GDG'(X'X)"'GDG’' = 7> GDG'(GLG') 'GDG’ = 0*Gdiag {

we have

! ! QU
) . 1 .. P / = 2 —
v (k) = otr [Gdlag{(ll T k)2a ) (lp T k)2 } G:| g Z (L + k)2'

i=1
. Show that the first derivative of v1 (k) and ~2(k) at 0 are
71(0) = =20" Y /17, ~3(0) = 0.

Hence there exist values of k& > 0 for which ¢(k) < ¢(0), that is for which 8* has smaller trace
mean square error than B Note that the increase in accuracy is most pronounced when some of the
eigenvalues [; are near 0, that is, when the columns of X are nearly colinear. However, the optimal
choice for k depends on the unknown value of 8 = Ga.

Solution. The first derivative is ;1 (k) is

p
L
(k) = =20 —
,71( ) o ;(17’4—]{5)37
and therefore,

P
1(0) = =202 17
=1

The first derivative of (k) is

p p
’ _ 2 Qg Q;
Yo (k) = —2k* (s +2kY OEwus
i=1 =1
and therefore,
75(0) = 0.

Other conclusions follow straightforwardly. [
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