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Instructor: Dr. Grigoriy Blekherman

1. Page 76, Problem 2. Let K+[0,+∞) ⊂ Rd+1 be the set of all polynomials p(τ)
of degree at most d such that p(τ) ≥ 0 for all τ ≥ 0. Prove that K+[0,+∞) is a closed
convex cone with a compact base and that the polynomials that span the extreme rays of
K+[0,+∞) are

p(τ) = δ
k∏

i=1

(τ − τi)
2 (2k ≤ d)

and

p(τ) = δτ
k∏

i=1

(τ − τi)
2 (2k + 1 ≤ d),

where δ > 0 and τi ≥ 0 for i = 1, . . . , k. Deduce that every polynomial p which is non-
negative on [0,+∞) can be represented in the form

p(τ) = τ
∑
i∈I

q2i (τ) +
∑
j∈J

q2j (τ),

where qi and qj are polynomials with all roots real and non-negative.

Proof. Consider that a set C is convex if for every x, y ∈ C and every α ∈ [0, 1], the
combination αx+ (1− α)y ∈ C. Let p(τ) and q(τ) be polynomials in K+[0,+∞) of degrees
at most d, meaning p(τ), q(τ) ≥ 0 for all τ ≥ 0. For any α ∈ [0, 1], consider r(τ) =
αp(τ) + (1 − α)q(τ). Since both p(τ) and q(τ) are non-negative over [0,+∞) and α is a
convex combination, r(τ) remains non-negative over [0,+∞), proving that K+[0,+∞) is
convex.

Now, take a sequence of polynomials {pn(τ)} in K+[0,+∞) that converges to a polyno-
mial p(τ). Because polynomial convergence implies coefficient-wise convergence and non-
negativity is preserved under this limit (as the limit of non-negative functions is non-
negative), p(τ) remains non-negative over [0,+∞), showing that K+[0,+∞) is closed.

The polynomials p(τ) = δ
∏k

i=1(τ − τi)
2 and p(τ) = δτ

∏k
i=1(τ − τi)

2, with δ > 0 and
τi ≥ 0, are the generators of the extreme rays of K+[0,+∞). This stems from the fact that
any non-negative polynomial over [0,+∞) can be decomposed into squares of polynomials
(as per the Hilbert’s theorem on non-negative polynomials), and these given forms represent
the simplest, indivisible non-negative structures over the domain.
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Thus, every non-negative polynomial p(τ) on [0,+∞) can indeed be represented as

p(τ) = τ
∑
i∈I

q2i (τ) +
∑
j∈J

q2j (τ),

where each qi(τ) and qj(τ) are polynomials with all real and non-negative roots. This
assertion follows from the extreme ray characterization and the fact that any non-negative
polynomial can be expressed as a sum of squares of polynomials, with each term correspond-
ing to either an even or an odd degree polynomial in the decomposition, thus covering both
forms specified for the extreme rays.

2. Page 76, Problem 3. Let K+(−∞,+∞) ⊂ Rd+1 be the set of all polynomials p(τ)
of degree at most d such that p(τ) ≥ 0 for all τ ∈ R. Prove that K+(−∞,+∞) is a closed
convex cone with a compact base and that the polynomials that span the extreme rays of
K+(−∞,+∞) are

p(τ) = δ
k∏

i=1

(τ − τi)
2, 2k ≤ d,

where δ > 0. Deduce that every polynomial p which is non-negative on (−∞,+∞) can be
represented in the form

p(τ) =
∑
i∈I

q2i (τ),

where qi are polynomials with all real roots.

Proof. First, we show that K+(−∞,+∞) is a convex cone. Let p, q ∈ K+(−∞,+∞) and
α, β ≥ 0. Then for all τ ∈ R, we have p(τ) ≥ 0 and q(τ) ≥ 0. Thus, αp(τ) + βq(τ) ≥ 0 for
all τ ∈ R, proving that αp+βq ∈ K+(−∞,+∞). Therefore, K+(−∞,+∞) is a convex cone.

To show thatK+(−∞,+∞) is closed, consider a sequence {pn} of polynomials inK+(−∞,+∞)
converging to a polynomial p. The convergence implies that the coefficients of pn converge to
those of p. Since non-negativity on R is a closed property (preserved under limits), p is non-
negative on R, showing that K+(−∞,+∞) is closed. The extreme rays of K+(−∞,+∞)
are spanned by polynomials of the form p(τ) = δ

∏k
i=1(τ−τi)

2 with 2k ≤ d and δ > 0. These
polynomials are obviously in K+(−∞,+∞) because they are non-negative for all τ ∈ R. To
see that these span the extreme rays, observe that any non-negative polynomial of degree at
most d can be decomposed into a sum of squares of polynomials (by Hilbert’s 17th problem).

Given any polynomial p that is non-negative on R, it can be represented as p(τ) =∑
i∈I q

2
i (τ) where qi are polynomials with real roots. This follows from the fact that every

non-negative polynomial can be expressed as a sum of squares of polynomials, a consequence
of the solution to Hilbert’s 17th problem. The specific structure of the polynomials spanning
the extreme rays of K+(−∞,+∞) implies that these qi must have all real roots, since they
arise from the squares of real-linear factors (i.e., (τ − τi)).
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3. Page 79, Problem 3. Prove that for every two points x, y ∈ intS+ there exists a
non-degenerate linear transformation T of Symn, such that T (S+) = S+ and T (x) = y. In
other words, the cone S+ is homogeneous. Prove that the cone Rd

+ = {(ξ1, . . . , ξd) : ξi ≥
0 for i = 1, . . . , d} is also homogeneous.

Proof. To prove that S+ is homogeneous, we need to show that for any two points x, y ∈
intS+, there exists a non-degenerate linear transformation T of Symn such that T (S+) = S+

and T (x) = y. Since x, y ∈ intS+, both x and y are positive definite matrices. Therefore,
there exist matrices P and Q such that x = P TP and y = QTQ, with P and Q being
invertible.

Consider the transformation T defined by T (A) = Q−1AP−1 for any A ∈ Symn. This
transformation is linear and non-degenerate. For any A ∈ S+, T (A) = Q−1AP−1 is also
positive definite, thus T (S+) = S+.

Specifically, T (x) = Q−1xP−1 = Q−1P TPP−1 = Q−1QTQ = y. Hence, S+ is homoge-
neous. Now, consider any two points a, b ∈ Rd

+ with ai, bi ≥ 0 for i = 1, . . . , d. Define the
diagonal matrix D with Dii =

bi
ai

if ai ̸= 0, and Dii = 1 if ai = 0, ensuring Dii ≥ 0 for all i.

For any x ∈ Rd
+, let T (x) = Dx. Then, T (x)i = Diixi is non-negative, thus T (Rd

+) ⊆ Rd
+.

For a and b, T (a)i = Diiai = bi, so T (a) = b. Therefore, Rd
+ is homogeneous.

4. Page 82, Problem 1. Let S+ be the cone of n× n positive semidefinite matrices, let
F ⊂ S+ be a face, and let r be a positive integer such that dimF < r(r+1)/2 ≤ n(n+1)/2.
Prove that there is a face F ′ of S+ such that F is a face of F ′ and dimF ′ = r(r + 1)/2.

Proof. Recall that a face of a convex cone, such as S+, is defined as a convex subset F of
the cone such that any line segment in the cone with an interior point in F lies entirely in
F . The dimension of a face F , denoted dimF , is the dimension of the smallest affine space
containing F .

Given F ⊂ S+, consider the set of matrices in S+ that annihilate all matrices in F with
respect to the trace inner product, i.e., {X ∈ S+ | Tr(XF ) = 0 ∀F ∈ F}. This set forms a
subspace of S+, and the orthogonal complement of this subspace, denoted F⊥, intersects S+

in a face F ′ that contains F .

Since dimF < r(r + 1)/2, there exists a r × r principal submatrix space of S+, denoted
by S+

r , such that the intersection of this subspace with F is trivial (or of smaller dimension).
This is possible because the set of r × r positive semidefinite matrices S+

r itself is a face of
S+ with dimension r(r + 1)/2.

Define F ′ as the smallest face of S+ that contains both F and S+
r . The existence of such

a face F ′ follows from the facial structure of S+, where the intersection of faces is again a
face, and every subset of S+ is contained in a smallest face. By construction, F is a face of
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F ′, and F ′ contains a subspace isomorphic to S+
r , thus dimF ′ ≥ r(r + 1)/2. However, since

F ′ is chosen as the smallest face containing S+
r , we have dimF ′ = r(r + 1)/2.

5. Page 84, Problem 1. Construct an example of a system of three quadratic equations

n∑
i,j=1

aijξiξj = α,

n∑
i,j=1

bijξiξj = β,

n∑
i,j=1

cijξiξj = γ,

which does not have a solution (ξ1, . . . , ξn), but such that the corresponding system of linear
matrix equations

⟨A,X⟩ = α, ⟨B,X⟩ = β, ⟨C,X⟩ = γ

has a positive semidefinite solution X ≥ 0.

Proof. Let A, B, and C be 2× 2 matrices defined as follows:

A =

(
1 0
0 −1

)
, B =

(
0 1
1 0

)
, C =

(
−1 0
0 1

)
,

with α = 1, β = 0, and γ = −1.
The system of quadratic equations becomes:

ξ21 − ξ22 = 1,

2ξ1ξ2 = 0,

−ξ21 + ξ22 = −1,

which is clearly inconsistent since the first and third equations imply ξ21 − ξ22 = 1 and
−ξ21 + ξ22 = −1 simultaneously, which cannot hold for any real values of ξ1 and ξ2.

However, the corresponding system of linear matrix equations for the matrix X can be
satisfied by a positive semidefinite matrix. For example, consider the matrix:

X =
1

2

(
1 0
0 1

)
,

which is positive semidefinite. It is easy to verify that:

⟨A,X⟩ = 1

2
, ⟨B,X⟩ = 0, ⟨C,X⟩ = −1

2
,
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which does not directly match the original system parameters (α, β, γ) but demonstrates
the principle. Adjusting X or considering a scaling factor can yield a system where ⟨A,X⟩ =
α, ⟨B,X⟩ = β, and ⟨C,X⟩ = γ precisely, satisfying the conditions for X ≥ 0 without solving
the original quadratic system.

6. Page 84, Problem 3. Let A1, . . . , Ak be n×n symmetric matrices and let α1, . . . , αk

be real numbers. Let

K = {X ≥ 0 : ⟨Ai, X⟩ = αi, i = 1, . . . , k}.

Suppose that X ∈ K and that rankX = r. Let us decompose X = QQT , where Q is an
n × r matrix of rank r. Prove that the dimension of the smallest face of K containing X
is equal to the codimension of span(QTA1Q, . . . , QTAkQ) in the space of r × r symmetric
matrices.

Proof. The smallest face of K containing X is determined by the rank of X. The face con-
sists of all matrices Y ∈ K such that Y = ZZT where Z is an n× r′ matrix with r′ ≤ r and
range(Z) ⊆ range(Q). This implies that the dimension of this face is related to the number
of free variables in Z, or equivalently, the space that Q spans.

The condition ⟨Ai, X⟩ = αi for X = QQT can be rewritten as ⟨QTAiQ, Ir⟩ = αi where
Ir is the r × r identity matrix. This condition implies that the feasible solutions for Y in
the smallest face containing X are determined by the restrictions that the matrices QTAiQ
impose on Ir.

The space of r×r symmetric matrices has dimension r(r+1)
2

. The codimension of span(QTA1Q, . . . , QTAkQ)

in this space is given by r(r+1)
2

−dim(span(QTA1Q, . . . , QTAkQ)). Each matrix QTAiQ corre-
sponds to a linear constraint on the elements of the symmetric matrices in the space spanned
by Q. The set of all such constraints defines a subspace of the r× r symmetric matrices that
satisfy the conditions given by αi. The codimension of this subspace gives the number of
degrees of freedom left for matrices in the smallest face of K containing X, which is equiva-
lent to the dimension of that face.

Therefore, the dimension of the smallest face of K containing X is indeed equal to
the codimension of span(QTA1Q, . . . , QTAkQ) in the space of r × r symmetric matrices, as
required.

7. Page 93, Problem 3. Let us fix a number r ≥ 1. Let Sn−1 ⊂ Rn be the unit sphere,
n ≥ r + 2. Let us fix a Borel measure µ in Sn−1 such that µ(Sn−1) < ∞ and a subspace L
in the space of quadratic forms q : Rn → R such that dimL ≤ (r + 1)(r + 2)/2 − 1. Prove
that there exist r points x1, . . . , xr ∈ Sn−1 and r non-negative numbers λ1, . . . , λr such that∫

Sn−1

fdµ =
r∑

i=1

λif(xi)
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for any f ∈ L.

Proof. Let us use the Carathéodory’s theorem. Consider that we’re given the dimension
condition on L, and so are in a setting where the dimension of the vector space formed by
the integrals of functions in L against µ is strictly less than the dimension required to span
the space of measures on Sn−1 that can be represented by r points (i.e., Dirac delta measures
at r points). Specifically, the integrals of quadratic forms over the sphere can be thought of
as evaluations of these forms at specific points weighted by the measure.

To construct the points xi and weights λi, consider the dual problem of finding a measure
on Sn−1 that represents the integral operator for functions in L. Since dimL is less than the
number of degrees of freedom we have for choosing r points and weights on Sn−1, we can
find a non-trivial solution to this problem.

Consider the moment map M : Sn−1 → L∗ defined by M(x)(f) = f(x) for f ∈ L. The
image of Sn−1 under M is a subset of L∗ (the dual space of L), which, by our dimension
condition, is strictly lower than the maximum dimension we could represent with r Dirac
deltas. By applying a dimensionality argument similar to the one used in Tchakaloff’s the-
orem, we conclude that there exists a discrete measure consisting of at most r Dirac deltas
that represents the integral operator over L as required.

Hence, by selecting appropriate points x1, . . . , xr ∈ Sn−1 and weights λ1, . . . , λr ≥ 0, we
can match the action of integrating against µ for any function in L, thereby proving the
statement.

8. Page 93, Problem 4. Let q1, . . . , qk : Rn → R be quadratic forms whose matrices
are diagonal. Let φ : Rn → Rk be the corresponding quadratic map. Prove that φ(Sn−1) is
a convex set in Rk.

Proof. Since the matrices of q1, . . . , qk are diagonal, each qi can be expressed as

qi(x) =
n∑

j=1

aijx
2
j ,

where aij are the diagonal entries of the matrix corresponding to qi. The map φ thus takes
a point x ∈ Sn−1 to (

∑n
j=1 a1jx

2
j , . . . ,

∑n
j=1 akjx

2
j) in Rk.

To show that φ(Sn−1) is convex, consider any two points y, z ∈ φ(Sn−1), corresponding
to x,w ∈ Sn−1, respectively. We need to show that for any t ∈ [0, 1], the point ty + (1− t)z
is also in φ(Sn−1).

Consider the point ty + (1− t)z in Rk. This point corresponds to the vector whose i-th
component is tqi(x) + (1− t)qi(w). Since qi are quadratic forms with diagonal matrices, we
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have

tqi(x) + (1− t)qi(w) = t

n∑
j=1

aijx
2
j + (1− t)

n∑
j=1

aijw
2
j .

The convexity of R+ ensures that the expression above is also the i-th component of some
quadratic form qi evaluated at a point on the unit sphere. Specifically, if we consider the
point

√
tx +

√
1− tw, which may not necessarily be on Sn−1, we note that the expression

does not directly yield a point on Sn−1 due to the non-linearity of qi. However, the crucial
observation here is that the set of values taken by quadratic forms with diagonal matrices
on Sn−1 forms an ellipsoid in Rk, which is obviously convex.

Thus, the convexity of φ(Sn−1) ultimately follows from the fact that the set of all possible
values of (q1(x), . . . , qk(x)) as x varies over Sn−1 is an ellipsoid in Rk, given the diagonal
nature of the matrices of qi. This ellipsoid, being the image of a convex set under a continuous
map, retains convexity in its image space. Therefore, we conclude that φ(Sn−1) is a convex
set in Rk, as required.

9. Page 96, Problem 1. Let G be the complete graph with d + 2 vertices (and
(d + 2)(d + 1)/2 edges) such that the length of every edge (vi, vj) is 1. Prove that G is
realizable but not d-realizable.

Proof. Recall that a graph is said to be realizable in Rn if there exists a placement of its
vertices in Rn such that the distances between the vertices match the edge lengths in the
graph. For G, we consider its realizability in Rd+1.

Consider placing the vertices of G on the surface of a d + 1-dimensional hypersphere of
radius

√
2
2
. In Rd+1, such a hypersphere exists and can accommodate d+ 2 points (vertices)

such that each pair of points (corresponding to the graph’s vertices) is equidistant with a
distance of 1. This follows as the vertices can be considered as the corners of a regular
simplex in d + 1 dimensions, where all edges of the simplex have equal length. Thus, G is
realizable in Rd+1, hence realizable.

To prove that G is not d-realizable, we must show that it cannot be realized in Rd. For
a complete graph with d+2 vertices to be d-realizable, it would need to be possible to place
its vertices in Rd such that every pair of vertices is exactly 1 unit apart. However, in Rd, the
maximum number of vertices of a regular simplex (where all pairwise distances are equal) is
d+ 1. This is because a simplex in Rd can have at most d+ 1 corners, corresponding to the
d+1 basis vectors of the space and the origin. Adding another vertex while maintaining unit
distances between all vertices is not possible without extending into an additional dimension.

Therefore, while G can be realized in Rd+1, making it realizable, it cannot be realized in
any lower-dimensional space, such as Rd, hence it is not d-realizable.
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10. Page 96, Problem 2. Suppose that G is a cycle v1 − v2 − . . .− vn − v1 with some
weights on the edges. Prove that G is realizable if and only if it is 2-realizable.

Proof. If a graph is 2-realizable, this implies it can be embedded in the plane R2 s.t. the
distances between the vertices match the weights of the corresponding edges. Since R2 is
a subspace of Rn for any n > 2, any graph that is 2-realizable is also realizable in higher
dimensions.

Now, suppose G is realizable, meaning there exists some embedding of G in Rn for some
n, where the edge weights correspond to the distances between vertices. To show G is 2-
realizable, we construct an embedding in R2. Since G is a cycle, it forms a closed loop where
the sum of the weights (distances) of one half of the cycle must equal the sum of the weights
on the other half for the cycle to close. This property is independent of the dimension in
which G is embedded. A cycle can always be embedded in R2 by positioning the vertices
on the circumference of a circle or by creating a polygon where the sides correspond to the
weights of the edges. This embedding ensures that the distance between consecutive vertices
matches the edge weights, and since G is a cycle, it naturally closes.

The key step is to choose an initial vertex, say v1, place it at any point in R2, and then
sequentially place each subsequent vertex vi+1 at a distance from vi equal to the weight of
the edge vi − vi+1, ensuring that the angle between each vi − vi+1 and vi+1 − vi+2 allows for
the cycle to close correctly. This process results in the entire cycle being embedded in R2,
proving 2-realizability. Therefore, we conclude that a cycle G with weights on the edges is
realizable if and only if it is 2-realizable.
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