MATH 8803

Convex Geometry Homework 3

Jacob Aguirre
Email: aguirre@gatech.edu
Instructor: Dr. Grigoriy Blekherman

1. Page 60, Problem 4. Suppose that not all the coordinates of a are equal. Prove that $\operatorname{dim} P(a)=n-1$.

Proof. Recall that the permutation polytope $P(a)$ lies in the affine hyperplane

$$
H=\left\{\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n} \mid \xi_{1}+\cdots+\xi_{n}=\alpha_{1}+\cdots+\alpha_{n}\right\} .
$$

This hyperplane is defined by a single linear equation, indicating that H is an $n-1$ dimensional subspace of \mathbb{R}^{n}. To prove $\operatorname{dim} P(a)=n-1$, we show that there are n affinely independent points within $P(a)$, implying its dimensionality is $n-1$ (since the dimension is one less than the number of affinely independent points).

Since not all coordinates of a are equal, permuting the coordinates of a yields vectors that are distinct. These vectors, including a itself, are points in $P(a)$ and lie within the hyperplane H. Consider any set of n such permutations, including a. This set forms a basis for H because no point can be written as an affine combination of the others, due to the distinctness of the coordinates in each permutation. Hence, we have identified n affinely independent points within $P(a)$, which lies in H. Therefore, the affine dimension of $P(a)$ is $n-1$, proving that $\operatorname{dim} P(a)=n-1$.
2. Page 67, Problem 1. Let $K \subset \mathbb{R}^{d}$ be a cone with a compact base. Prove that 0 is a face of K.

Proof. Recall that a cone K in \mathbb{R}^{d} with a compact base can be represented as the set of all linear combinations of the form λx, where x belongs to the base B of the cone and $\lambda \geq 0$. The compactness of B ensures that K is closed and convex. To show that 0 is a face of K, we consider the definition of a face. A face of a convex set C is a convex subset F of C such that every closed line segment in C with an interior point in F has both endpoints in F.

The point 0 satisfies this definition for the cone K, as follows: For any closed line segment in K that contains 0 as an interior point, the line segment must be the trivial segment $[0,0]$ since K, being a cone, emanates from 0 and contains no line segments that pass through 0 and extend in both directions.

Furthermore, 0 can be seen as the intersection of K with a supporting hyperplane that contains 0 and is orthogonal to any line passing through points of K. Such a hyperplane supports K at 0 , making 0 a face of K. Therefore, we conclude that 0 is indeed a face of the cone K with a compact base.
3. Page 67, Problem 2. Construct an example of a compact set $A \subset \mathbb{R}^{2}$ such that co (A) is not closed.

Proof. Suppose we take $A=\{(x, \sin (1 / x)): x \in(0,1]\} \cup\{(0, y): y \in[-1,1]\}$. This set is compact in \mathbb{R}^{2}, but its conic hull $\operatorname{co}(A)$ is not closed. For instance, we can see that A is both bounded and closed. The graph of $y=\sin (1 / x)$ for $x \in(0,1]$ is bounded, and the closure of this graph as x approaches 0 includes the line segment along the y-axis from -1 to 1 , making A closed. Hence, A is compact by the Heine-Borel theorem.

The conic hull of $A, \operatorname{co}(A)$, fails to be closed as it does not contain the limit point $(0,0)$, which can be approached by a sequence of points in $\operatorname{co}(A)$ but cannot itself be represented as a conic combination of points in A. Thus, we've found an example set where its conic hull is not closed.
4. Page 68, Problem 1. Prove that each hyperplane $H \subset \mathbb{R}^{d+1}$ such that $0 \in H$ intersects the moment curve $g(\tau)$ in at most d points.

Proof. A hyperplane H in \mathbb{R}^{d+1} containing the origin can be defined by a linear equation of the form $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{d+1} x_{d+1}=0$, where $\left(a_{1}, a_{2}, \ldots, a_{d+1}\right) \neq(0,0, \ldots, 0)$ is a normal vector to the hyperplane. Recall that the moment curve $g(\tau)$ is given by $\left(\tau, \tau^{2}, \ldots, \tau^{d}, \tau^{d+1}\right)$. For an intersection point between H and $g(\tau)$, we substitute $g(\tau)$ into the equation of H, yielding

$$
a_{1} \tau+a_{2} \tau^{2}+\cdots+a_{d} \tau^{d}+a_{d+1} \tau^{d+1}=0
$$

This equation is a polynomial equation of degree $d+1$ in τ. By the Fundamental Theorem of Algebra, a polynomial of degree n has at most n roots, unless the polynomial is the zero polynomial. In our case, since not all a_{i} are zero, this is not the zero polynomial, and thus the equation has at most $d+1$ roots.

However, since the polynomial is of degree $d+1$, and we are considering the case $0 \in H$, which corresponds to one of the roots being trivially satisfied by $\tau=0$, we are left with a polynomial of degree d that can have at most d non-zero roots. These roots correspond to the intersection points of H and $g(\tau)$, implying that there are at most d such intersection points.
5. Page 68, Problem 3. Let $S^{1}=\{(\cos \tau, \sin \tau): 0 \leq \tau \leq 2 \pi\}$ be the circle. Suppose that $d=2 k$ is even and let $h: S^{1} \rightarrow \mathbb{R}^{d}$ be the closed curve

$$
h(\tau)=(\cos \tau, \sin \tau, \cos 2 \tau, \sin 2 \tau, \ldots, \cos k \tau, \sin k \tau), 0 \leq \tau \leq 2 \pi
$$

Prove that each affine hyperplane $H \subset \mathbb{R}^{d}$ intersects the curve $h(\tau)$ in at most d points.
Proof. An affine hyperplane in \mathbb{R}^{d} can be defined by the equation $a \cdot x=b$, where $a \in \mathbb{R}^{d}$ is a normal vector, x is a point in \mathbb{R}^{d}, and b is just a constant. The intersection of this hyperplane with the curve $h(\tau)$ requires solving

$$
a_{1} \cos \tau+a_{2} \sin \tau+\ldots+a_{2 k-1} \cos k \tau+a_{2 k} \sin k \tau=b
$$

This equation is a trigonometric polynomial of degree k, implying at most k distinct roots, considering the periodicity of the trigonometric functions. Thus, the curve $h(\tau)$ intersects any affine hyperplane in \mathbb{R}^{d} at most $d=2 k$ points.
6. Page 71, Problem 1. Prove that one cannot find m points $\tau_{1}^{*}, \ldots \tau_{m}^{*}$ in the interval $[0,1]$ and m real numbers $\lambda_{1}, \ldots, \lambda_{m}$ such that

$$
\int_{0}^{1} f(\tau) d \tau=\sum_{i=1}^{m} \lambda_{i} f\left(\tau_{i}^{*}\right)
$$

for all polynomials f of degree $2 m$.
Proof. Assume, by way of contradiction, that there exist points $\tau_{1}^{*}, \ldots, \tau_{m}^{*}$ in $[0,1]$ and real numbers $\lambda_{1}, \ldots, \lambda_{m}$ such that

$$
\int_{0}^{1} f(\tau) d \tau=\sum_{i=1}^{m} \lambda_{i} f\left(\tau_{i}^{*}\right)
$$

for all polynomials f of degree $2 m$. Then let us consider $q(\tau)=\left(\tau-\tau_{1}^{*}\right)^{2}\left(\tau-\tau_{2}^{*}\right)^{2} \cdots\left(\tau-\tau_{m}^{*}\right)^{2}$, a polynomial of degree $2 m$ that is zero at each τ_{i}^{*} and positive elsewhere in $[0,1]$. According to our assumption, we should have

$$
\int_{0}^{1} q(\tau) d \tau=\sum_{i=1}^{m} \lambda_{i} q\left(\tau_{i}^{*}\right)=0
$$

which contradicts the fact that $q(\tau)$, being strictly positive on $(0,1)$ except at the τ_{i}^{*} points, has a strictly positive integral over $[0,1]$. Therefore, no such points and coefficients can be found that satisfy the initial condition for all polynomials of degree $2 m$, establishing the proof by contradiction.

7. Page 71, Problem 3. A function

$$
f\left(\tau_{=} \gamma_{0}+\sum_{k=1}^{d}\left(\alpha_{k} \sin k \tau+\beta_{k} \cos k \tau\right) 0 \leq \tau \leq 2 \pi\right.
$$

is called a trigonometric polynomial of degree at most d. Let ρ be a nonnegative continuous function on $[0,2 \pi]$ such that $\rho(0)=\rho(2 \pi)$. Prove that there exists $d+1$ points $0 \leq \tau_{0}^{*}<$ $\ldots<\tau_{d}^{*}<2 \pi$ and $d+1$ nonnegative numbers $\lambda_{0}, \ldots, \lambda_{d}$ such that the formula

$$
\int_{0}^{2 \pi} f(\tau) \rho(\tau) d \tau=\sum_{i=0}^{d} \lambda_{i} f\left(\tau_{i}^{*}\right)
$$

is exact for any trigonometric polynomial of degree at most d.

Proof. Let us consider a trigonometric polynomial f of degree at most d, given by

$$
f(\tau)=\gamma_{0}+\sum_{k=1}^{d}\left(\alpha_{k} \sin k \tau+\beta_{k} \cos k \tau\right)
$$

The function $\rho(\tau)$ is continuous and nonnegative on $[0,2 \pi]$ and satisfies the condition of $\rho(0)=\rho(2 \pi)$, thus allowing for it to be a weight function for a weighted inner product space. Given $\rho(\tau)$, we can define an inner product on the space of trionometric polynomials of degree at most d as

$$
\langle f, g\rangle=\int_{0}^{2 \pi} f(\tau) g(\tau) \rho(\tau) d \tau
$$

Using the Gram-Schmidt process with this inner product, we can construct an orthogonal basis $\left\{p_{0}, p_{1}, \ldots, p_{d}\right\}$ for the space of trigonometric polynomials of degree at most d, where each p_{i} is a trigonometric polynomial of degree i. The zeros of $p_{d+1}(\tau)$, the first polynomial orthogonal to the space of degree at most d, allows for us to identify $d+1$ distinct products $\tau_{0}^{*}, \ldots, \tau_{d}^{*}$ in $[0,2 \pi)$. Finally, the weights λ_{i} can be determined by solving the linear system formed by enforcing the quadrature formula to be exact for the basis polynomials $p_{i}(\tau)$. That is, for each $i=0, \ldots, d$,

$$
\int_{0}^{2 \pi} p_{i}(\tau) \rho(\tau) d \tau=\sum_{j=0}^{d} \lambda_{j} p_{i}\left(\tau_{j}^{*}\right)
$$

This system is solvable because the matrix formed by evaluating p_{i} at τ_{j}^{*} is a Vandermonde matrix and is nonsingular, given that all τ_{j}^{*} are distinct. Each λ_{i} is precisely an integral of a nonnegative function over domain $[0,2 \pi]$ implying again nonnegativity.

