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1. Page 60, Problem 4. Suppose that not all the coordinates of a are equal. Prove
that dim P(a) =n — 1.

Proof. Recall that the permutation polytope P(a) lies in the affine hyperplane
H:{(gly,gn) GRn‘§1++€n:al++an}

This hyperplane is defined by a single linear equation, indicating that H is an n — 1 di-
mensional subspace of R". To prove dim P(a) = n — 1, we show that there are n affinely
independent points within P(a), implying its dimensionality is n — 1 (since the dimension is
one less than the number of affinely independent points).

Since not all coordinates of a are equal, permuting the coordinates of a yields vectors
that are distinct. These vectors, including a itself, are points in P(a) and lie within the
hyperplane H. Consider any set of n such permutations, including a. This set forms a basis
for H because no point can be written as an affine combination of the others, due to the
distinctness of the coordinates in each permutation. Hence, we have identified n affinely
independent points within P(a), which lies in H. Therefore, the affine dimension of P(a) is
n — 1, proving that dim P(a) =n — 1. O

2. Page 67, Problem 1. Let K C R? be a cone with a compact base. Prove that 0 is a
face of K.

Proof. Recall that a cone K in R? with a compact base can be represented as the set of all
linear combinations of the form Az, where = belongs to the base B of the cone and A > 0.
The compactness of B ensures that K is closed and convex. To show that 0 is a face of K,
we consider the definition of a face. A face of a convex set C' is a convex subset F' of C
such that every closed line segment in C' with an interior point in F' has both endpoints in F'.

The point 0 satisfies this definition for the cone K, as follows: For any closed line segment
in K that contains 0 as an interior point, the line segment must be the trivial segment [0, 0]
since K, being a cone, emanates from 0 and contains no line segments that pass through 0
and extend in both directions.

Furthermore, 0 can be seen as the intersection of K with a supporting hyperplane that
contains 0 and is orthogonal to any line passing through points of K. Such a hyperplane
supports K at 0, making 0 a face of K. Therefore, we conclude that 0 is indeed a face of the
cone K with a compact base. O



3. Page 67, Problem 2. Construct an example of a compact set A C R? such that
co(A) is not closed.

Proof. Suppose we take A = {(z,sin(1/z)) : z € (0,1]} U {(0,y) : y € [—1,1]}. This set is
compact in R?, but its conic hull co(A) is not closed. For instance, we can see that A is both
bounded and closed. The graph of y = sin(1/z) for x € (0,1] is bounded, and the closure
of this graph as x approaches 0 includes the line segment along the y-axis from —1 to 1,
making A closed. Hence, A is compact by the Heine-Borel theorem.

The conic hull of A, co(A), fails to be closed as it does not contain the limit point (0, 0),
which can be approached by a sequence of points in co(A) but cannot itself be represented
as a conic combination of points in A. Thus, we've found an example set where its conic
hull is not closed. O

4. Page 68, Problem 1. Prove that each hyperplane H C R such that 0 € H
intersects the moment curve g(7) in at most d points.

Proof. A hyperplane H in R containing the origin can be defined by a linear equation of
the form ajxq +asxe + -+ + agr1x441 = 0, where (aq, as, ..., a441) # (0,0,...,0) is a normal
vector to the hyperplane. Recall that the moment curve g(7) is given by (7,72, ..., 7% 74F1).
For an intersection point between H and g(7), we substitute g(7) into the equation of H,

yielding

2 d d+1
T + QoT" + -+ + aqT +6Ld+17'+ =0.

This equation is a polynomial equation of degree d+1 in 7. By the Fundamental Theorem
of Algebra, a polynomial of degree n has at most n roots, unless the polynomial is the zero
polynomial. In our case, since not all a; are zero, this is not the zero polynomial, and thus
the equation has at most d + 1 roots.

However, since the polynomial is of degree d + 1, and we are considering the case 0 € H,
which corresponds to one of the roots being trivially satisfied by 7 = 0, we are left with a
polynomial of degree d that can have at most d non-zero roots. These roots correspond to
the intersection points of H and ¢(7), implying that there are at most d such intersection
points. ]

5. Page 68, Problem 3. Let S! = {(cos T,8in7) : 0 <7 < 27r} be the circle. Suppose
that d = 2k is even and let h : S' — R? be the closed curve

h(7) = (cosT,sin T, cos 27,sin 27, . .., cos kT, sink7t), 0 < 7 < 2.
Prove that each affine hyperplane H C R? intersects the curve h(7) in at most d points.

Proof. An affine hyperplane in R? can be defined by the equation a - z = b, where a € R?
is a normal vector, z is a point in R? and b is just a constant. The intersection of this
hyperplane with the curve h(7) requires solving

a1 COST + Ao SINT + ...+ agp_1 cos kT + ag, sin kT = b.



This equation is a trigonometric polynomial of degree k, implying at most k distinct roots,
considering the periodicity of the trigonometric functions. Thus, the curve h(7) intersects
any affine hyperplane in R? at most d = 2k points.

O

6. Page 71, Problem 1. Prove that one cannot find m points 77, ... 7 in the interval
[0,1] and m real numbers Ay, ..., A, such that

/0 F)r = SN ()

for all polynomials f of degree 2m.

Proof. Assume, by way of contradiction, that there exist points 7/, ..., 7} in [0, 1] and real
numbers Aq,..., A, such that

/0 FE)r = SN ()

for all polynomials f of degree 2m. Then let us consider ¢(7) = (1—77)*(t—75)? - (1—77)2,
a polynomial of degree 2m that is zero at each 7, and positive elsewhere in [0, 1]. According
to our assumption, we should have

[ atmrar =3t <o,

which contradicts the fact that ¢(7), being strictly positive on (0, 1) except at the 7 points,
has a strictly positive integral over [0, 1]. Therefore, no such points and coefficients can be
found that satisfy the initial condition for all polynomials of degree 2m, establishing the
proof by contradiction.

m

7. Page 71, Problem 3. A function

d
flr=vo + Z(ak sin kT + B coskt) 0 < 7 < 27w
k=1

is called a trigonometric polynomial of degree at most d. Let p be a nonnegative continuous
function on [0, 27] such that p(0) = p(27). Prove that there exists d + 1 points 0 < 7§ <
... <T1; <21 and d + 1 nonnegative numbers )y, ..., \g such that the formula

/0 " pmdr =3 Af ()

1=0

is exact for any trigonometric polynomial of degree at most d.



Proof. Let us consider a trigonometric polynomial f of degree at most d, given by
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(o sin kT + B cos k7).
k=1

The function p(7) is continuous and nonnegative on [0, 27| and satisfies the condition of
p(0) = p(27), thus allowing for it to be a weight function for a weighted inner product space.
Given p(7), we can define an inner product on the space of trionometric polynomials of
degree at most d as

(f,9) _/Oﬂf(T)g(T),O(T)dT.

Using the Gram-Schmidt process with this inner product, we can construct an orthogonal
basis {po, p1, ..., pa} for the space of trigonometric polynomials of degree at most d, where
each p; is a trigonometric polynomial of degree i. The zeros of ps.1(7), the first polynomial
orthogonal to the space of degree at most d, allows for us to identify d + 1 distinct products
75, ..., 7y in [0,27). Finally, the weights ); can be determined by solving the linear system
formed by enforcing the quadrature formula to be exact for the basis polynomials p;(7).
That is, for each i =0, ... ,d,

/0Wpi(T)P(T)dT:Z)\jpi(Tf)-

This system is solvable because the matrix formed by evaluating p; at 7 is a Vandermonde
matrix and is nonsingular, given that all 7} are distinct. Each A; is precisely an integral of
a nonnegative function over domain [0, 27] implying again nonnegativity. ]



