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1. Page 60, Problem 4. Suppose that not all the coordinates of a are equal. Prove
that dim P (a) = n− 1.

Proof. Recall that the permutation polytope P (a) lies in the affine hyperplane

H = {(ξ1, . . . , ξn) ∈ Rn | ξ1 + · · ·+ ξn = α1 + · · ·+ αn}.

This hyperplane is defined by a single linear equation, indicating that H is an n − 1 di-
mensional subspace of Rn. To prove dimP (a) = n − 1, we show that there are n affinely
independent points within P (a), implying its dimensionality is n− 1 (since the dimension is
one less than the number of affinely independent points).

Since not all coordinates of a are equal, permuting the coordinates of a yields vectors
that are distinct. These vectors, including a itself, are points in P (a) and lie within the
hyperplane H. Consider any set of n such permutations, including a. This set forms a basis
for H because no point can be written as an affine combination of the others, due to the
distinctness of the coordinates in each permutation. Hence, we have identified n affinely
independent points within P (a), which lies in H. Therefore, the affine dimension of P (a) is
n− 1, proving that dimP (a) = n− 1.

2. Page 67, Problem 1. Let K ⊂ Rd be a cone with a compact base. Prove that 0 is a
face of K.

Proof. Recall that a cone K in Rd with a compact base can be represented as the set of all
linear combinations of the form λx, where x belongs to the base B of the cone and λ ≥ 0.
The compactness of B ensures that K is closed and convex. To show that 0 is a face of K,
we consider the definition of a face. A face of a convex set C is a convex subset F of C
such that every closed line segment in C with an interior point in F has both endpoints in F .

The point 0 satisfies this definition for the cone K, as follows: For any closed line segment
in K that contains 0 as an interior point, the line segment must be the trivial segment [0, 0]
since K, being a cone, emanates from 0 and contains no line segments that pass through 0
and extend in both directions.

Furthermore, 0 can be seen as the intersection of K with a supporting hyperplane that
contains 0 and is orthogonal to any line passing through points of K. Such a hyperplane
supports K at 0, making 0 a face of K. Therefore, we conclude that 0 is indeed a face of the
cone K with a compact base.
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3. Page 67, Problem 2. Construct an example of a compact set A ⊂ R2 such that
co(A) is not closed.

Proof. Suppose we take A = {(x, sin(1/x)) : x ∈ (0, 1]} ∪ {(0, y) : y ∈ [−1, 1]}. This set is
compact in R2, but its conic hull co(A) is not closed. For instance, we can see that A is both
bounded and closed. The graph of y = sin(1/x) for x ∈ (0, 1] is bounded, and the closure
of this graph as x approaches 0 includes the line segment along the y-axis from −1 to 1,
making A closed. Hence, A is compact by the Heine-Borel theorem.

The conic hull of A, co(A), fails to be closed as it does not contain the limit point (0, 0),
which can be approached by a sequence of points in co(A) but cannot itself be represented
as a conic combination of points in A. Thus, we’ve found an example set where its conic
hull is not closed.

4. Page 68, Problem 1. Prove that each hyperplane H ⊂ Rd+1 such that 0 ∈ H
intersects the moment curve g(τ) in at most d points.

Proof. A hyperplane H in Rd+1 containing the origin can be defined by a linear equation of
the form a1x1+ a2x2+ · · ·+ ad+1xd+1 = 0, where (a1, a2, . . . , ad+1) ̸= (0, 0, . . . , 0) is a normal
vector to the hyperplane. Recall that the moment curve g(τ) is given by (τ, τ 2, . . . , τ d, τ d+1).
For an intersection point between H and g(τ), we substitute g(τ) into the equation of H,
yielding

a1τ + a2τ
2 + · · ·+ adτ

d + ad+1τ
d+1 = 0.

This equation is a polynomial equation of degree d+1 in τ . By the Fundamental Theorem
of Algebra, a polynomial of degree n has at most n roots, unless the polynomial is the zero
polynomial. In our case, since not all ai are zero, this is not the zero polynomial, and thus
the equation has at most d+ 1 roots.

However, since the polynomial is of degree d+1, and we are considering the case 0 ∈ H,
which corresponds to one of the roots being trivially satisfied by τ = 0, we are left with a
polynomial of degree d that can have at most d non-zero roots. These roots correspond to
the intersection points of H and g(τ), implying that there are at most d such intersection
points.

5. Page 68, Problem 3. Let S1 =

{
(cos τ, sin τ) : 0 ≤ τ ≤ 2π

}
be the circle. Suppose

that d = 2k is even and let h : S1 → Rd be the closed curve

h(τ) = (cos τ, sin τ, cos 2τ, sin 2τ, . . . , cos kτ, sin kτ) , 0 ≤ τ ≤ 2π.

Prove that each affine hyperplane H ⊂ Rd intersects the curve h(τ) in at most d points.

Proof. An affine hyperplane in Rd can be defined by the equation a · x = b, where a ∈ Rd

is a normal vector, x is a point in Rd, and b is just a constant. The intersection of this
hyperplane with the curve h(τ) requires solving

a1 cos τ + a2 sin τ + . . .+ a2k−1 cos kτ + a2k sin kτ = b.
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This equation is a trigonometric polynomial of degree k, implying at most k distinct roots,
considering the periodicity of the trigonometric functions. Thus, the curve h(τ) intersects
any affine hyperplane in Rd at most d = 2k points.

6. Page 71, Problem 1. Prove that one cannot find m points τ ∗1 , . . . τ
∗
m in the interval

[0, 1] and m real numbers λ1, . . . , λm such that∫ 1

0

f(τ)dτ =
m∑
i=1

λif(τ
∗
i )

for all polynomials f of degree 2m.

Proof. Assume, by way of contradiction, that there exist points τ ∗1 , . . . , τ
∗
m in [0, 1] and real

numbers λ1, . . . , λm such that ∫ 1

0

f(τ)dτ =
m∑
i=1

λif(τ
∗
i )

for all polynomials f of degree 2m. Then let us consider q(τ) = (τ−τ ∗1 )
2(τ−τ ∗2 )

2 · · · (τ−τ ∗m)
2,

a polynomial of degree 2m that is zero at each τ ∗i and positive elsewhere in [0, 1]. According
to our assumption, we should have∫ 1

0

q(τ)dτ =
m∑
i=1

λiq(τ
∗
i ) = 0,

which contradicts the fact that q(τ), being strictly positive on (0, 1) except at the τ ∗i points,
has a strictly positive integral over [0, 1]. Therefore, no such points and coefficients can be
found that satisfy the initial condition for all polynomials of degree 2m, establishing the
proof by contradiction.

7. Page 71, Problem 3. A function

f(τ=γ0 +
d∑

k=1

(αk sin kτ + βk cos kτ) 0 ≤ τ ≤ 2π

is called a trigonometric polynomial of degree at most d. Let ρ be a nonnegative continuous
function on [0, 2π] such that ρ(0) = ρ(2π). Prove that there exists d + 1 points 0 ≤ τ ∗0 <
. . . < τ ∗d < 2π and d+ 1 nonnegative numbers λ0, . . . , λd such that the formula∫ 2π

0

f(τ)ρ(τ)dτ =
d∑

i=0

λif(τ
∗
i )

is exact for any trigonometric polynomial of degree at most d.
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Proof. Let us consider a trigonometric polynomial f of degree at most d, given by

f(τ) = γ0 +
d∑

k=1

(αk sin kτ + βk cos kτ).

The function ρ(τ) is continuous and nonnegative on [0, 2π] and satisfies the condition of
ρ(0) = ρ(2π), thus allowing for it to be a weight function for a weighted inner product space.
Given ρ(τ), we can define an inner product on the space of trionometric polynomials of
degree at most d as

⟨f, g⟩ =
∫ 2π

0

f(τ)g(τ)ρ(τ)dτ.

Using the Gram-Schmidt process with this inner product, we can construct an orthogonal
basis {p0, p1, . . . , pd} for the space of trigonometric polynomials of degree at most d, where
each pi is a trigonometric polynomial of degree i. The zeros of pd+1(τ), the first polynomial
orthogonal to the space of degree at most d, allows for us to identify d+1 distinct products
τ ∗0 , . . . , τ

∗
d in [0, 2π). Finally, the weights λi can be determined by solving the linear system

formed by enforcing the quadrature formula to be exact for the basis polynomials pi(τ).
That is, for each i = 0, . . . , d, ∫ 2π

0

pi(τ)ρ(τ)dτ =
d∑

j=0

λjpi(τ
∗
j ).

This system is solvable because the matrix formed by evaluating pi at τ
∗
j is a Vandermonde

matrix and is nonsingular, given that all τ ∗j are distinct. Each λi is precisely an integral of
a nonnegative function over domain [0, 2π] implying again nonnegativity.
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