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1. Page 42, Problem 5 Let A ⊂ V be an affine subspace of dimension n. Prove that
the maximum number of affinely independent points in A is n+ 1.

Proof. Consider a set of points {p0, p1, . . . , pk} in a vector space V is said to be affinely
independent if the set of vectors {p1 − p0, p2 − p0, . . . , pk − p0} is linearly independent in
V . This means that no point in the set can be expressed as an affine combination of the
others, where an affine combination of points is a linear combination of the points where the
coefficients sum to 1.

Given that A is an affine subspace of dimension n, it means that any maximal set of
linearly independent vectors in A − A (the set of differences of points in A) has n vectors.
Now, consider the base case for n = 0, A is a single point, and the maximum number of
affinely independent points is 1 = 0 + 1, which holds trivially.

To prove the inductive step, assume we have a set of k affinely independent points in
A, {p0, p1, . . . , pk−1}, where k ≤ n + 1. The vectors {p1 − p0, . . . , pk−1 − p0} are linearly
independent by the definition of affine independence. If we attempt to add another point
pk to this set such that the set remains affinely independent, then pk − p0 must be linearly
independent of the existing set of vectors {p1 − p0, . . . , pk−1 − p0}.

Since A is of dimension n, the maximal number of linearly independent vectors in A−A
is n. This implies that we cannot have more than n vectors that are linearly independent.
Thus, the maximum number of affinely independent points is n+ 1.

2. Page 43, Problem 3 Prove that the projection pr : V → V/L is indeed a linear
transformation, that its image is the whole space V/L and that its kernel is L.

Proof. To prove that pr is a linear transformation, we must show additivity and scalar
multiplication. Indeed, for any u, v ∈ V , we have that

pr(u+ v) = (u+ v) + L = (u+ L) + (v + L) = pr(u) + pr(v)

which clearly preserves addition. For any scalar c and any v ∈ V ,

pr(cv) = cv + L = c(v + L) = c · pr(v)

demonstrating that pr preserves scalar multiplication. Now, the image of pr consists of all
equivalence classes v + L for v ∈ V . Since every element V/L is an equivalence class of the
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form v+L, it follows that pr is the whole space V/L. Now, considering the kernel, the kernel
of pr consists of all vectors v ∈ V such that pr(v) = 0+L = L, which implies v+L = L. So,
v ∈ L clearly since v+L = L if and only if v is an element contained in L. Conversely, every
element of L clearly maps to L under pr, showing that the kernel of pr is exactly L.

3. Page 47, Problem 2 Let V = R∞ be the vector space of all infinite sequences
x = (ξ1, ξ2, . . .) of real numbers such that all but finitely many terms ξi are zero. One can
think of R∞ as the space of all univariate polynomials with real coefficients. Let A ⊂ V \{0}
be the set of all sequences x where the last non-zero term is strictly positive. Prove that
0 /∈ A, that A is convex, that A is not algebraically open, and that there are no affine
hyperplanes H such that 0 ∈ H and H isolates A.

Proof. To prove convexity, let us consider any two sequences x = (ξ1, ξ2, . . .) and y =
(η1, η2, . . .) in A and any scalar λ ∈ [0, 1]. The sequence z = λx + (1 − λ)y is a linear
combination of x and y. Since both x and y have their last non-zero term strictly positive,
and since a linear combination with positive coefficients preserves the sign of the last non-
zero term, z also has its last non-zero term strictly positive, implying z ∈ A. Hence, A is
convex. Since a set is algebraically open if, for every point x in the set, there exists an ϵ > 0
such that the ball B(x, ϵ) ⊂ A. Consider any sequence x ∈ A and any ϵ > 0. There exists
a sequence y not in A (for instance, by changing the sign of the last non-zero term of x
to negative) such that the norm ∥x − y∥ < ϵ. This implies that B(x, ϵ) cannot be entirely
contained in A, proving that A is not algebraically open.

Finally, since an affine hyperplaneH in V can be described as the set of points x satisfying
f(x) = c for some linear functional f and constant c. Since 0 ∈ H, we have f(0) = c.
However, for any linear functional f and any x ∈ A, there exists a scalar λ > 0 such that
λx ∈ A and f(λx) = λf(x) ̸= c for sufficiently large or small λ, contradicting the assumption
that H isolates A. Thus, there are no affine hyperplanes H with 0 ∈ H that isolate A.

4. Page 50, Problem 7 Prove that every non-empty compact convex set in Rd has an
exposed point.

Proof. Let K be a non-empty compact convex set in Rd. By the supporting hyperplane
theorem, for any point x ∈ ∂K, the boundary of K, there exists at least one supporting
hyperplane H such that x ∈ H and K lies entirely on one side of H. Since K is compact,
the extreme value theorem guarantees that every continuous function attains its maximum
and minimum on K. Consider the function fx(y) = ⟨y, x⟩ for a fixed x ∈ Rd and y ∈ K,
where ⟨·, ·⟩ denotes the standard inner product in Rd. The function fx(y) is continuous in y
and thus attains its maximum and minimum on K. The points at which these extrema are
attained are exposed points, as they are points where the supporting hyperplane, defined by
the gradient of fx at these points, touches K at a single point. Therefore, K must have at
least one exposed point, completing the proof.
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5. Page 53, Problems 1,2 Prove that the set of extreme points of a closed convex set
in R2 is closed. Furthermore, construct an example of a compact convex set K ⊂ R3 such
that ex(K) is not closed.

Proof. Let C be a closed convex set in R2, and let E denote its set of extreme points. Sup-
pose E is not closed. Then there exists a sequence {xn} of points in E converging to a point
x ∈ C such that x /∈ E. Since x is not an extreme point, it can be written as a convex
combination of two distinct points in C, say x = λy+(1−λ)z for some y, z ∈ C, y ̸= z, and
0 < λ < 1. However, this contradicts the assumption that each xn is an extreme point, as
extreme points cannot be expressed as a convex combination of other points in C. Hence,
E must be closed.

For an example, consider the set

{(x, y, z) : (z−1)2+y2 ≤ (
1− x

2
)2, 1 ≥ x ≥ 0}∪{(x, y, z) : (z−1)2+y2 ≤ (

1 + x

2
)2,−1 ≤ x ≤ 0}.

Then since (0, 0, 0) is a limit of the points on {(x, y, z) : x = 0, (z − 1)2 + y2 ≤ 1}, all points
in the set except for (0, 0, 0) are extreme points, but (0, 0, 0) can be written as a convex
combination of (−1, 0, 0) and (0, 0, 1).

6. Page 55, Problem 3 Prove that polytopes have finitely many faces.

Proof. Consider that a face F is a hyperplane H which isolates P and F = H ∩ P . For
every hyperplane H, it isolates P if every x ∈ P satisfies ⟨c, x⟩ ≤ α, and F = H ∩ P/ = ∅
if there exists x ∈ P with ⟨c, x⟩ = α. That is, H is one of the inequalities defining P , and
by definition, there are finitely many of them. Thus it follows that there are finitely many
faces.

7. Page 58, Problem 3 Prove that the set F = {X ∈ Bn : ξ11 = 0} is a face of Bn

of dimension (n − 1)2 − 1 and that G = {X ∈ Bn : ξ11 = 1} is a face of Bn of dimension
(n− 2)2.

Proof. Recall that F is of dimension (n− 1)2− 1 by the fact that Bn has dimension (n− 1)2

and one entry being fixed as 1. Also, for G, Bn has dimension (n−1)2 and so we can treat it
as knowing the (n− 1)2 principal matrix the last row and column are known. While ξ11 = 1,
by the definition of Bn, ξ1i = 0 = ξi1 for every i = 2, . . . , n, so the first row and column are
also known that is, the dimension of G is (n− 2)2.

So suppose that F is convex since it is intersection of convex sets Bn and {X : X11 =
0}.Let A ∈ F , and consider X, Y ∈ Bn, λ ∈ (0, 1) such that A = λX + (1− λ)Y.

Then by definition of Bn, X11 ≥ 0, Y11 ≥ 0. Since λX11 + (1 − λ)Y11 = 0, we know
X11 = 0 = Y11,so X, Y ∈ F , then F is a face of Bn by definition. For G we can see that
G is convex for the same reason above. Let A ∈ G, and consider X, Y ∈ Bn, λ ∈ (0, 1)
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such that A = λX + (1 − λ)Y. By the definition of Bn, we know X11 ≤ 1, Y11 ≤ 1. Since
λX11 + (1 − λ)Y11 = 1,we know X11 = 1 = Y11 ,so X, Y ∈ G, then G is a face of Bn by
definition.
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