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1. Page 11, Problem 1. Show by an example that the constant d+ 1 in Carathéodory’s
Theorem cannot be improved to d.

Proof. The conclusion is obvious. To illustrate why the constant d + 1 in Carathéodory’s
Theorem cannot be reduced to d, let us provide an intuitive example. Let P be the set
of vertices of a standard d-dimensional simplex in Rd. Recall that a d-simplex has d + 1
vertices. The point x to consider is the centroid of this d-dimensional simplex. The centroid
of a simplex can be expressed as the average of its vertices.

Now, in R2 (a triangle), the centroid is the point where all three medians intersect. Sim-
ilarly, in higher dimensions, the centroid of a simplex is the average of all its d+ 1 vertices.
Thus, the key observation is that this centroid cannot be expressed as a convex combination
of only d vertices of the simplex. In R2, we cannot express the centroid of a triangle using
only two of its vertices. Similarly, in higher dimensions, the centroid of a d-simplex cannot
be expressed as a convex combination of only d of its vertices.

Thus, our example has shown that the constant d + 1 in Carathéodory’s Theorem is
the best possible and cannot be improved to d. In other words, there are points in the
convex hull of a set in Rd that require all d + 1 points for their representation as a convex
combination.

Page 11, Problem 4. Suppose that S ⊂ Rd is a set such that every two points in S can
be connected by a continuous path in S or a union of at most d such sets. Prove that every
point u ∈ Conv(S) is a convex combination of d points of S.

Proof. Consider a point u ∈ Conv(S). By Carathéodory’s Theorem, u can be written as a
convex combination of d+ 1 points x1, x2, . . . , xd+1 ∈ S, i.e.,

u =
d+1∑
i=1

λixi

where λi ≥ 0 for all i and
∑d+1

i=1 λi = 1.
To show that u can be expressed as a convex combination of at most d points, we leverage

the connectedness property of S. Specifically, since any two points in S can be connected
by a continuous path in S or a union of at most d such sets, we can construct a continuous
path connecting the points x1, x2, . . . , xd+1.
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Without loss of generality, assume that λd+1 is the smallest of the λi’s. We can then
define a new point x′ as a convex combination of x1, x2, . . . , xd such that:

x′ =
1

1− λd+1

d∑
i=1

λixi

Now, x′ lies on the continuous path connecting x1, x2, . . . , xd, and hence x′ ∈ S. Further-
more, u can be expressed as a convex combination of x′ and xd+1:

u = (1− λd+1)x
′ + λd+1xd+1

Since x′ is itself a convex combination of d points from S, we have expressed u as a convex
combination of at most d points from S. This completes the proof.

2. Page 12, Problem 1. Give an example of a closed set in R2 whose convex hull is not
closed.

Proof. Consider A := {(x, t) : x > 0, t ≥ 1/x} and B := (x, t) : x > 0, t ≤ −1/x, then
conv(A ∪B) = {(x, t) : x > 0}.

Page 12, Problem 2. Prove that the convex hull of an open set in Rd is open.

Proof. Let U be an open set in Rd and Conv(U) denote its convex hull. Given some point x,
we’ll say it is in Conv(U) if and only if x can be written as a convex combination of points
in U . That is, there exist points x1, x2, . . . , xn ∈ U and non-negative numbers λ1, λ2, . . . , λn

such that
∑n

i=1 λi = 1 and x =
∑n

i=1 λixi.

Now by supposition that U is open, for each xi ∈ U , there exists an εi > 0 such that the
ball B(xi, εi) ⊂ U . For x ∈ Conv(U) and x =

∑n
i=1 λixi as above, we want to show that

there exists a radius δ > 0 such that the ball B(x, δ) ⊂ Conv(U). Let us choose δ such that
for each xi, the ball B(xi, λiδ) ⊂ U . The λiδ will be smaller than the corresponding εi for
each i, ensuring B(xi, λiδ) ⊂ U .

We can now see that for any point y ∈ B(x, δ), y can be written as y =
∑n

i=1 λiyi, where
yi ∈ B(xi, λiδ). Since each B(xi, λiδ) ⊂ U , it follows that yi ∈ U for all i. Since U is convex,
any convex combination of points in U is also in U . Therefore, y ∈ Conv(U). Since for every
point x ∈ Conv(U), we can find a δ > 0 such that B(x, δ) ⊂ Conv(U), Conv(U) is open.

3. Page 19, Problem 3. Give a example of an infinite family {Ai : i = 1, 2, . . .} of
convex sets in Rd such that every d + 1 sets have a common point but there are no points
common to all the sets Ai.

Proof. Consider the space Rd and a point P in this space. For each i ∈ {1, 2, . . .}, define Ai

to be the closed half-space that includes P and is bounded by a hyperplane perpendicular to

2



the vector from P to the point Qi on the unit sphere centered at P , where each Qi is distinct.

This construction ensures that any d + 1 of these half-spaces will intersect at P , since
P is on the boundary of each half-space. However, as i increases and the points Qi cover
different directions on the unit sphere, the intersection of all Ai will eventually exclude P
and indeed, any other point. This is because the different orientations of the hyperplanes
mean that there is no single point contained in all half-spaces.

Thus, this family of convex sets meets the given criteria: each subset of d+ 1 sets has a
common point, but there is no point common to all the sets Ai.

4. Page 20, Problem 1. Let A1, . . . , Am be convex sets in Rd and let k ≤ d+ 1. Prove
that if every k of the sets have a common point, then for every (d − k + 1)−dimensional
subspace L in Rd there exists a translate L+ u : u ∈ Rd which intersects every set Ai : i =
1, . . . ,m.

Proof. Let L be a (d− k + 1)-dimensional subspace of Rd. We wish to find a vector u ∈ Rd

such that (L + u) ∩ Ai ̸= ∅ for all i = 1, . . . ,m. Consider the set S =
⋂k−1

j=1 Aj. By the
hypothesis, S is non-empty since any k− 1 sets among A1, . . . , Am have a common point. S
is also convex as an intersection of convex sets.

For each i = k, . . . ,m, let fi(u) = dist(u,Ai), the distance from the point u in the
translate L + u to the set Ai. Each fi is a continuous function because the distance
function in a normed space is continuous. Consider the function F : L → R defined by
F (u) = max{fk(u), . . . , fm(u)}. F is continuous as it is the maximum of a finite number of
continuous functions. We aim to show that there exists u ∈ L such that F (u) = 0. This
would mean that for this particular translate L+ u, the distance to each Ai for i = k, . . . ,m
is zero, implying (L+ u) ∩ Ai ̸= ∅ for each i.

By the Hahn-Banach Separation Theorem, for each i = k, . . . ,m, there is a closed hyper-
plane that strictly separates L+u and Ai if F (u) > 0. However, this leads to a contradiction
because the intersection of more than d − k + 1 such hyperplanes in Rd is empty, which
would imply that the intersection of k sets among A1, . . . , Am is empty, contradicting the
hypothesis. Therefore, there must exist u ∈ L such that F (u) = 0, completing the proof.

Page 20, Problem 2. Let A1, . . . , Am and C be convex sets in Rd. Suppose that for any d+1
sets Ai1 , . . . , Aid+1

there is a translate C +u : u ∈ Rd of C which intersects all Ai1 , . . . , Aid+1
.

Prove that there is a translate C + u of C which intersects all sets A1, . . . , Am.

Proof. Consider that we have A1, . . . , Am and C ∈ Rd as given. Define a new family of sets
Bi fori = 1, . . . ,m as follows,

Bi = {u ∈ Rd | (C + u) ∩ Ai ̸= ∅}

It’s easy to see that each Bi is convex. For instance, we know that both the translation
and intersection of convex sets is convex. Also consider that Bi is the set of all translations
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that make C intersect Ai, which can be viewed as an intersection of translations of convex
sets.

Now, by the problem’s assumption, for any d+1 sets Ai1 , . . . , Aid+1
, there exists a translate

of C that intersects all of them. This means for any d+1 sets Bi1 , . . . , Bid+1
, their intersection

is non-empty. Applying Helly’s theorem to the collection {B1, B2, . . . , Bm}, we conclude that
there must be a point u ∈ Rd that is in all of the Bi. This u is the translation vector such
that C + u intersects every set Ai for i = 1, . . . ,m. Hence, we have shown that there exists
a translate C + u of C which intersects all sets A1, . . . , Am.

5. Page 22, Problem 2. Let I1, . . . , Im be parallel line segments in R2, such that for
every three Ii1 , Ii2 , Ii3 there is a straight line that intersects all three. Prove that there is a
straight line that intersects all the segments I1, . . . , Im.

Proof. Consider the set of all lines that intersect at least one of the segments I1, . . . , Im. This
set forms a convex cone in the dual space (the space of lines in R2), since the intersection
of any two such lines with the line segments will also intersect the line segments. By the
given condition, for any three segments Ii1 , Ii2 , Ii3 , there is a line intersecting all three. This
implies that the intersection of any three of these convex cones (each corresponding to a line
intersecting one of the segments) is non-empty.

Now, let us briefly recall that Helly’s Theorem states that if a family of convex sets in Rd

has the property that the intersection of any d+1 of them is non-empty, then the intersection
of the entire family is non-empty.

In our case, d = 2, and the intersection of any three of our convex cones (which corre-
spond to the lines intersecting the line segments in R2) is non-empty. Therefore, by Helly’s
Theorem, the intersection of all these convex cones is non-empty. This means there is at
least one line in the dual space that intersects all the convex cones, and thus, there exists a
line in R2 that intersects all the line segments I1, . . . , Im.

6. Page 24, Problem 1. Let S ⊂ Rd be a compact convex set. Prove that there is a
point u ∈ Rd such that (−1/d)S + u ⊂ S.

Proof. Let us denote by c the center of the mass S. By the properties of convex sets, it’s
clear that c ∈ S. Now, consider the set (−1/d)S + c. Each point x ∈ S is transformed to
(−1/d)x+ c. By inspection, this operation is just scaling x towards S and translating it by
c. Since S is convex set and c is its center of mass, we know that all such points (−1/d)x+ c
will still lie within S. Thus, (−1/d)S + c ⊂ S.

7. Page 25, Problem 2. Show that for m ≥ 2, the set A(τ) is not compact.

Necessary context: For a τ ∈ T , let us define a set A(τ) ∈ Rm as,

A(τ) =

{
(ξ1, . . . , ξm) : |g(τ)− fx(τ)| ≤ ϵ

}
.
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Proof. Suppose, without loss of generality, that A(τ) ̸= ∅ and fi(τ) ̸= 0 for every i, otherwise,
let xi = ξi go to infinity and we would be done. Now, consider the case where m = 2. Also,
assume that ξ1 such that ξ1f1(τ) = g(τ). By our assumptions, there exists nonzero α, β
such that αf1(τ) + βf2(τ) = 0. Then it clearly follows that (ξ1 + λα, λβ) ∈ A(τ). Then
∥(ξ1 + λα, λβ)∥ → ∞ as λ → ∞. Thus, we can see that A(τ) is not compact.
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