MATH 8803

Convex Geometry Homework 1

Jacob Aguirre
Email: aguirre@gatech.edu
Instructor: Dr. Grigory Blekherman

1. Page 11, Problem 1. Show by an example that the constant $d+1$ in Carathéodory's Theorem cannot be improved to d.

Proof. The conclusion is obvious. To illustrate why the constant $d+1$ in Carathéodory's Theorem cannot be reduced to d, let us provide an intuitive example. Let P be the set of vertices of a standard d-dimensional simplex in \mathbb{R}^{d}. Recall that a d-simplex has $d+1$ vertices. The point x to consider is the centroid of this d-dimensional simplex. The centroid of a simplex can be expressed as the average of its vertices.

Now, in \mathbb{R}^{2} (a triangle), the centroid is the point where all three medians intersect. Similarly, in higher dimensions, the centroid of a simplex is the average of all its $d+1$ vertices. Thus, the key observation is that this centroid cannot be expressed as a convex combination of only d vertices of the simplex. In \mathbb{R}^{2}, we cannot express the centroid of a triangle using only two of its vertices. Similarly, in higher dimensions, the centroid of a d-simplex cannot be expressed as a convex combination of only d of its vertices.

Thus, our example has shown that the constant $d+1$ in Carathéodory's Theorem is the best possible and cannot be improved to d. In other words, there are points in the convex hull of a set in \mathbb{R}^{d} that require all $d+1$ points for their representation as a convex combination.

Page 11, Problem 4. Suppose that $S \subset \mathbb{R}^{d}$ is a set such that every two points in S can be connected by a continuous path in S or a union of at most d such sets. Prove that every point $u \in \operatorname{Conv}(S)$ is a convex combination of d points of S.

Proof. Consider a point $u \in \operatorname{Conv}(S)$. By Carathéodory's Theorem, u can be written as a convex combination of $d+1$ points $x_{1}, x_{2}, \ldots, x_{d+1} \in S$, i.e.,

$$
u=\sum_{i=1}^{d+1} \lambda_{i} x_{i}
$$

where $\lambda_{i} \geq 0$ for all i and $\sum_{i=1}^{d+1} \lambda_{i}=1$.
To show that u can be expressed as a convex combination of at most d points, we leverage the connectedness property of S. Specifically, since any two points in S can be connected by a continuous path in S or a union of at most d such sets, we can construct a continuous path connecting the points $x_{1}, x_{2}, \ldots, x_{d+1}$.

Without loss of generality, assume that λ_{d+1} is the smallest of the λ_{i} 's. We can then define a new point x^{\prime} as a convex combination of $x_{1}, x_{2}, \ldots, x_{d}$ such that:

$$
x^{\prime}=\frac{1}{1-\lambda_{d+1}} \sum_{i=1}^{d} \lambda_{i} x_{i}
$$

Now, x^{\prime} lies on the continuous path connecting $x_{1}, x_{2}, \ldots, x_{d}$, and hence $x^{\prime} \in S$. Furthermore, u can be expressed as a convex combination of x^{\prime} and x_{d+1} :

$$
u=\left(1-\lambda_{d+1}\right) x^{\prime}+\lambda_{d+1} x_{d+1}
$$

Since x^{\prime} is itself a convex combination of d points from S, we have expressed u as a convex combination of at most d points from S. This completes the proof.
2. Page 12, Problem 1. Give an example of a closed set in \mathbb{R}^{2} whose convex hull is not closed.

Proof. Consider $A:=\{(x, t): x>0, t \geq 1 / x\}$ and $B:=(x, t): x>0, t \leq-1 / x$, then $\operatorname{conv}(A \cup B)=\{(x, t): x>0\}$.

Page 12, Problem 2. Prove that the convex hull of an open set in \mathbb{R}^{d} is open.
Proof. Let U be an open set in \mathbb{R}^{d} and $\operatorname{Conv}(U)$ denote its convex hull. Given some point x, we'll say it is in $\operatorname{Conv}(U)$ if and only if x can be written as a convex combination of points in U. That is, there exist points $x_{1}, x_{2}, \ldots, x_{n} \in U$ and non-negative numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ such that $\sum_{i=1}^{n} \lambda_{i}=1$ and $x=\sum_{i=1}^{n} \lambda_{i} x_{i}$.

Now by supposition that U is open, for each $x_{i} \in U$, there exists an $\varepsilon_{i}>0$ such that the ball $B\left(x_{i}, \varepsilon_{i}\right) \subset U$. For $x \in \operatorname{Conv}(U)$ and $x=\sum_{i=1}^{n} \lambda_{i} x_{i}$ as above, we want to show that there exists a radius $\delta>0$ such that the ball $B(x, \delta) \subset \operatorname{Conv}(U)$. Let us choose δ such that for each x_{i}, the ball $B\left(x_{i}, \lambda_{i} \delta\right) \subset U$. The $\lambda_{i} \delta$ will be smaller than the corresponding ε_{i} for each i, ensuring $B\left(x_{i}, \lambda_{i} \delta\right) \subset U$.

We can now see that for any point $y \in B(x, \delta)$, y can be written as $y=\sum_{i=1}^{n} \lambda_{i} y_{i}$, where $y_{i} \in B\left(x_{i}, \lambda_{i} \delta\right)$. Since each $B\left(x_{i}, \lambda_{i} \delta\right) \subset U$, it follows that $y_{i} \in U$ for all i. Since U is convex, any convex combination of points in U is also in U. Therefore, $y \in \operatorname{Conv}(U)$. Since for every point $x \in \operatorname{Conv}(U)$, we can find a $\delta>0$ such that $B(x, \delta) \subset \operatorname{Conv}(U), \operatorname{Conv}(U)$ is open.
3. Page 19, Problem 3. Give a example of an infinite family $\left\{A_{i}: i=1,2, \ldots\right\}$ of convex sets in \mathbb{R}^{d} such that every $d+1$ sets have a common point but there are no points common to all the sets A_{i}.

Proof. Consider the space \mathbb{R}^{d} and a point P in this space. For each $i \in\{1,2, \ldots\}$, define A_{i} to be the closed half-space that includes P and is bounded by a hyperplane perpendicular to
the vector from P to the point Q_{i} on the unit sphere centered at P, where each Q_{i} is distinct.
This construction ensures that any $d+1$ of these half-spaces will intersect at P, since P is on the boundary of each half-space. However, as i increases and the points Q_{i} cover different directions on the unit sphere, the intersection of all A_{i} will eventually exclude P and indeed, any other point. This is because the different orientations of the hyperplanes mean that there is no single point contained in all half-spaces.

Thus, this family of convex sets meets the given criteria: each subset of $d+1$ sets has a common point, but there is no point common to all the sets A_{i}.
4. Page 20, Problem 1. Let A_{1}, \ldots, A_{m} be convex sets in \mathbb{R}^{d} and let $k \leq d+1$. Prove that if every k of the sets have a common point, then for every $(d-k+1)$-dimensional subspace L in \mathbb{R}^{d} there exists a translate $L+u: u \in \mathbb{R}^{d}$ which intersects every set $A_{i}: i=$ $1, \ldots, m$.

Proof. Let L be a $(d-k+1)$-dimensional subspace of \mathbb{R}^{d}. We wish to find a vector $u \in \mathbb{R}^{d}$ such that $(L+u) \cap A_{i} \neq \emptyset$ for all $i=1, \ldots, m$. Consider the set $S=\bigcap_{j=1}^{k-1} A_{j}$. By the hypothesis, S is non-empty since any $k-1$ sets among A_{1}, \ldots, A_{m} have a common point. S is also convex as an intersection of convex sets.

For each $i=k, \ldots, m$, let $f_{i}(u)=\operatorname{dist}\left(u, A_{i}\right)$, the distance from the point u in the translate $L+u$ to the set A_{i}. Each f_{i} is a continuous function because the distance function in a normed space is continuous. Consider the function $F: L \rightarrow \mathbb{R}$ defined by $F(u)=\max \left\{f_{k}(u), \ldots, f_{m}(u)\right\} . F$ is continuous as it is the maximum of a finite number of continuous functions. We aim to show that there exists $u \in L$ such that $F(u)=0$. This would mean that for this particular translate $L+u$, the distance to each A_{i} for $i=k, \ldots, m$ is zero, implying $(L+u) \cap A_{i} \neq \emptyset$ for each i.

By the Hahn-Banach Separation Theorem, for each $i=k, \ldots, m$, there is a closed hyperplane that strictly separates $L+u$ and A_{i} if $F(u)>0$. However, this leads to a contradiction because the intersection of more than $d-k+1$ such hyperplanes in \mathbb{R}^{d} is empty, which would imply that the intersection of k sets among A_{1}, \ldots, A_{m} is empty, contradicting the hypothesis. Therefore, there must exist $u \in L$ such that $F(u)=0$, completing the proof.

Page 20, Problem 2. Let A_{1}, \ldots, A_{m} and C be convex sets in \mathbb{R}^{d}. Suppose that for any $d+1$ sets $A_{i_{1}}, \ldots, A_{i_{d+1}}$ there is a translate $C+u: u \in \mathbb{R}^{d}$ of C which intersects all $A_{i_{1}}, \ldots, A_{i_{d+1}}$. Prove that there is a translate $C+u$ of C which intersects all sets A_{1}, \ldots, A_{m}.

Proof. Consider that we have A_{1}, \ldots, A_{m} and $C \in \mathbb{R}^{d}$ as given. Define a new family of sets B_{i} for $i=1, \ldots, m$ as follows,

$$
B_{i}=\left\{u \in \mathbb{R}^{d} \mid(C+u) \cap A_{i} \neq \emptyset\right\}
$$

It's easy to see that each B_{i} is convex. For instance, we know that both the translation and intersection of convex sets is convex. Also consider that B_{i} is the set of all translations
that make C intersect A_{i}, which can be viewed as an intersection of translations of convex sets.

Now, by the problem's assumption, for any $d+1$ sets $A_{i_{1}}, \ldots, A_{i_{d+1}}$, there exists a translate of C that intersects all of them. This means for any $d+1$ sets $B_{i_{1}}, \ldots, B_{i_{d+1}}$, their intersection is non-empty. Applying Helly's theorem to the collection $\left\{B_{1}, B_{2}, \ldots, B_{m}\right\}$, we conclude that there must be a point $u \in \mathbb{R}^{d}$ that is in all of the B_{i}. This u is the translation vector such that $C+u$ intersects every set A_{i} for $i=1, \ldots, m$. Hence, we have shown that there exists a translate $C+u$ of C which intersects all sets A_{1}, \ldots, A_{m}.
5. Page 22, Problem 2. Let I_{1}, \ldots, I_{m} be parallel line segments in \mathbb{R}^{2}, such that for every three $I_{i_{1}}, I_{i_{2}}, I_{i_{3}}$ there is a straight line that intersects all three. Prove that there is a straight line that intersects all the segments I_{1}, \ldots, I_{m}.

Proof. Consider the set of all lines that intersect at least one of the segments I_{1}, \ldots, I_{m}. This set forms a convex cone in the dual space (the space of lines in \mathbb{R}^{2}), since the intersection of any two such lines with the line segments will also intersect the line segments. By the given condition, for any three segments $I_{i_{1}}, I_{i_{2}}, I_{i_{3}}$, there is a line intersecting all three. This implies that the intersection of any three of these convex cones (each corresponding to a line intersecting one of the segments) is non-empty.

Now, let us briefly recall that Helly's Theorem states that if a family of convex sets in \mathbb{R}^{d} has the property that the intersection of any $d+1$ of them is non-empty, then the intersection of the entire family is non-empty.

In our case, $d=2$, and the intersection of any three of our convex cones (which correspond to the lines intersecting the line segments in \mathbb{R}^{2}) is non-empty. Therefore, by Helly's Theorem, the intersection of all these convex cones is non-empty. This means there is at least one line in the dual space that intersects all the convex cones, and thus, there exists a line in \mathbb{R}^{2} that intersects all the line segments I_{1}, \ldots, I_{m}.
6. Page 24, Problem 1. Let $S \subset \mathbb{R}^{d}$ be a compact convex set. Prove that there is a point $u \in \mathbb{R}^{d}$ such that $(-1 / d) S+u \subset S$.

Proof. Let us denote by c the center of the mass S. By the properties of convex sets, it's clear that $c \in S$. Now, consider the set $(-1 / d) S+c$. Each point $x \in S$ is transformed to $(-1 / d) x+c$. By inspection, this operation is just scaling x towards S and translating it by c. Since S is convex set and c is its center of mass, we know that all such points $(-1 / d) x+c$ will still lie within S. Thus, $(-1 / d) S+c \subset S$.

7. Page 25, Problem 2. Show that for $m \geq 2$, the set $A(\tau)$ is not compact.

Necessary context: For a $\tau \in T$, let us define a set $A(\tau) \in \mathbb{R}^{m}$ as,

$$
A(\tau)=\left\{\left(\xi_{1}, \ldots, \xi_{m}\right): \quad\left|g(\tau)-f_{x}(\tau)\right| \leq \epsilon\right\}
$$

Proof. Suppose, without loss of generality, that $A(\tau) \neq \emptyset$ and $f_{i}(\tau) \neq 0$ for every i, otherwise, let $x_{i}=\xi_{i}$ go to infinity and we would be done. Now, consider the case where $m=2$. Also, assume that ξ_{1} such that $\xi_{1} f_{1}(\tau)=g(\tau)$. By our assumptions, there exists nonzero α, β such that $\alpha f_{1}(\tau)+\beta f_{2}(\tau)=0$. Then it clearly follows that $\left(\xi_{1}+\lambda \alpha, \lambda \beta\right) \in A(\tau)$. Then $\left\|\left(\xi_{1}+\lambda \alpha, \lambda \beta\right)\right\| \rightarrow \infty$ as $\lambda \rightarrow \infty$. Thus, we can see that $A(\tau)$ is not compact.

