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1 Introduction and Preliminaries

Convex Bodies

Convex sets

For most of my notes, the sets we’ll be considering are subsets of Euclidean n−space. Many
definitions and theorems could be stated in an affinely invariant manner. I won’t, however,
stress this point. If we’re using the symbol Rn, it should be clear from the context whether
we mean real vector space, real affine space, or Euclidean space. In the latter case, we assume
the ordinary scalar product

⟨x, y⟩ = ξ1η1 + . . .+ ξnηn for x = (ξ1, . . . , ξn), y = (η1, . . . , ηn)

so that the square of Euclidean distance between points x and y equals

∥x− y∥2 = ⟨x− y, x− y⟩.

Recall that an open ball with center x and radius r is the set {y | ∥x − y∥ < r}. By
⟨K, y⟩ ≥ 0 , we mean ⟨x, y⟩ ≥ 0 for every x ∈ K. We assume the reader to be somewhat
familiar with n−dimensional affine and Euclidean geometry.

1.1 Definition. A set C ⊂ Rn is called convex if, for all x, y ∈ C, x ̸= y, the line segment

[x, y] := {λx+ (1− λ)y | 0 ≤ λ ≤ 1}

is contained in C (Figure 1).

Examples of convex sets are a point, a line, a circular disc in R2 , the platonic solids
(see Figure 10 in section 6) in R3. Also ∅ and Rn are convex.

If B is an open circular disc in R2 and M is any subset of the boundary circle ∂B of B,
then B ∪M is also convex. So, a convex set need be neither open nor closed. In general we
shall restrict ourselves to closed convex sets.

There is a simple way to construct new convex sets from given ones:
1.2 Lemma. The intersection of an arbitrary collection of convex sets is convex.

Proof: If a line segment is contained in every set of the collection, it is also contained in
their intersection.
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□

1.3 Definition. We say x is a convex combination of x1, . . . , xr ∈ Rn if there exist
λ1, . . . , λr ∈ R such that

x = λ1x1 + . . .+ λrxr , (1)

λ1 + . . .+ λr = 1 , (2)

λ1 ≥ 0 , . . . , λr ≥ 0. (3)

If condition (3) is dropped, we have an affine combination of x1, . . . , xr , and x , x1, . . . , xr

are called affinely dependent. If x , x1, . . . , xr are not affinely dependent, we say they are
affinely independent.

So, convex combinations are special affine combinations (Figure 2).
If x1, . . . , xr are affinely independent, the numbers λ1 , . . . , λr are sometimes called barycen-

tric coordinates of x (with respect to the affine basis x1, . . . , xr).
1.4 Definition. The set of all convex combinations of a set M ⊂ Rn is called the convex
hull

conv M

ofM ; in particular, conv ∅ = ∅. Analogously, the set of all affine combinations of elements
of M is called the affine hull

aff M

of M . We will denote by lin M (linear hull) the linear space generated by M . It is the
”smallest” linear space containing M.

If M = {x1, . . . , xr} is a finite set, we say P := conv M is a convex polytope, or simply a
polytope.

If x1, . . . , xr are affinely independent, we say

Tr−1 := conv{x1, . . . , xr}

is an (r− 1)−simplex or, briefly, a simplex. aff Tr−1 and Tr−1 are said to have dimension
r − 1.
Remarks.

1. Clearly, M ⊂ conv M ⊂ aff M .

2. Every polytope is compact (that is, bounded and closed).

1.5 Theorem.

1. (a) A set M ⊂ Rn is convex if and only if it contains all its convex combinations, that
is, if and only if

M = conv M
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2. The convex hull of M ⊂ Rn is the smallest convex set that contains M ; this means
M ⊂ M ′ and M ′ convex imply conv M ⊂ M ′

Proof. First, we will show that conv M is convex.
If x, y ∈convM , there exist x1, . . . , xr, y1, . . . , ys ∈ M and real numbers λ1, . . . , λr, µ1, . . . , µs

such that

x = λ1x1 + . . .+ λrxr, λ1 + . . .+ λr = 1 λ1 ≥ 0, . . . , λr ≥ 0

and

y = λ1y1 + . . .+ λsys, λ1 + . . .+ λs = 1 λ1 ≥ 0, . . . , λs ≥ 0.

Employing 0 coefficients, if necessary, we may assume r = s and yj = xj, j = 1, . . . , r.
For arbitrary 0 ≤ λ ≤ 1,

λx+ (1− λ)y = λ(λ1x1 + . . .+ λrxr) + (1− λ)(µ1x1 + . . .+ µrxr)

= [λλ1 + (1− λ)µ1]x1 + . . .+ [λλr + (1− λ)µr]xr.

Since all coefficients are nonnegative, and since

λλ1 + (1− λ)µ1 + . . .+ λλr + (1− λ)µr = λ+ 1− λ = 1 ,

λx + (1 − λ)y is a convex combination of x1, . . . , xr. So, conv M is convex and, in view
of Remark 1, we obtain (a).

Now, to see (b), suppose M ′ is a convex set, M ′ ⊃ M , and that x ∈ conv M . Then there
exist x1, . . . , xr ∈ M such that x = λ1x1 + . . .+ λrxr, λ1 + . . .+ λr = 1, and λ1, . . . , λr > 0.
Since x1, . . . , xr ∈ M ′ as well, we find successively

y1 := λ1(λ1 + λ2)
−1x1 + λ2(λ1 + λ2)

−1x2

y2 := (λ1 + λ2)(λ1 + λ2 + λ3)
−1y1 + λ3(λ1 + λ2 + λ3)

−1x3

...x = (λ1 + . . .+ λr−1)(λ1 + . . .+ λr)
−1yr−2 + λr(λ1 + . . .+ λr)

−1xr

which are all in M ′, hence, conv M ⊂ M ′.

□

1.6 Definition. If C is a convex set, we call

dim C :=dim (aff C)

the dimension of C By convention, dim ∅ = −1.

1.7 Definition. A compact convex set C is called a convex body.
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For example, note that points and line segments are convex bodies in Rn, n ≥ 1, so that
a convex body in Rn need not have dimension n.

1.8 Definition. We say x ∈ M ⊂ Rn is in the relative interior of M , x ∈ rint M , if x
is in the interior of M relative to aff M (that is, there exists an open ball B in aff M such
that x ∈ B ⊂ M). If aff M = Rn, then rint M := int M(note that rint R0 = int R0 = {0}).

Our main emphasis will be on convex polytopes and an unbounded counterpart of poly-
topes, called polyhedral cones:

1.9 Definition. If M ⊂ Rn, the set of all nonnegative linear combinations

x = λ1y1 + . . .+ λkyk , y1, . . . , yk ∈ M , λ1 ≥ 0, . . . , λk ≥ 0

of elements of M is called the positive hull

σ := pos M

of M or the cone determined by M . By convention, pos ∅ := {0}.
For fixed u ∈ Rn, u ̸= 0, and α ∈ R, the set H := {x | ⟨x, u⟩ = α} is a hyperplane.

H+ := {x | ⟨x, u⟩ ≥ α} and H− := {x | ⟨x, u⟩ ≤ α} are called the half-spaces bounded by H.
If σ ⊂ H+ and α = 0, we say σ has an apex, namely 0. (we use the symbol 0 for the number
0, the zero vector, and the origin).

If M = {x1, . . . , xr} is finite, we call

σ = pos {x1, . . . , xr}

a polyhedral cone. Unless otherwise stated, by a cone we always mean a polyhedral cone.
Sometimes we write

σ = R≥0x1 + . . .+ R≥0xr ,

R≥0 denoting the set of nonnegative real numbers. From now on, we will use the notation
R+ denoting this set of nonnegative real numbers and R++ denoting the set of strictly positive
real numbers.

Example. A quadrant in R2 and an octant in R3 are cones with an apex, whereas a
closed half-space or the intersection of two closed half-spaces H+

1 , H
+
2 with 0 ∈ H1, 0 ∈ H2

in R3, are cones without apex.
Since convex combinations are, by definition, nonnegative linear combinations, we have
1.10 Lemma. The positive hull of any set M is convex.
Figure 3 illustrates a polyhedral cone of dimension three which is the positive hull of

two-dimensional polytope K. Through pos M might generally be called a cone, we reserve
this term for polyhedral cones.

Section Exercises

1. The convex hull of any compact (closed and bounded) set is again compact.

2. Find an example of a closed set M such that conv M is not closed.
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3. Determine all convex subsets C of R3, for which R3\C is also convex. (Except ∅,R⊯

there are, up to three such sets of affine transformations, that is, translations combined
with linear maps.

4. Call a set M ϵ−convex if, for a given ϵ > 0, each ball with radius ϵ and center in M
intersects M in a convex set. Furthermore, call a set M connected if any two if its
points can be joined by a rectifiable arc (as is defined in calculus) contained in M .
Prove: (a) Any ϵ−convex closed connected set M in R2 is convex. (b) Statement (a)
is false without the assumption of M being connected.

Theorems of Radon and Caratheodory

The following theorem is helpful when handling convex combinations.

2.1 Theorem (Radon’s Theorem). Let M = {x1, . . . , xr} ⊂ Rn be an arbitrary finite set,
and let M1,M2 be a partition of M , that is, M = M1 ∪M2,M1 ∩M2 = ∅ , M1 ̸= ∅,M2 ̸= ∅.

1. (a) If r ≥ n+ 2 then the partition can be chosen such that

conv M1 ∩ conv M2 ̸= ∅.

2. (b) If r ≥ n+1 and 0 is an apex of pos M , yet 0 /∈ M or r ≥ n+2, then the partition
can be chosen such that

pos M1 ∩ pos M2 ̸= {0}.

3. (c) The partition is unique if and only if, in case (a), r = n+2 and any n+1 points of
M are affinely independent, in case (b), r = n+ 1 and any n points of M are linearly
independent.

2.2 Definition. We call M1,M2 in Theorem 2.1 a Radon partition of M .
Proof of Theorem 2.1

(a) From r ≥ n+ 2 , it follows that x1, . . . , xr are affinely dependent. Hence,

λ1x1 + . . .+ λrxr = 0 can hold with λ1 + . . .+ λr = 0 , not all λi = 0.

We may assume that, for a particular j, 0 < j < r,

λ1 > 0, . . . , λj > 0; λj+1 ≤ 0, . . . , λr ≤ 0

We set

λ := λ1 + . . .+ λj = −λj+1 − . . .− λr > 0 and

x := λ−1(λ1x1 + . . .+ λjxj) = −λ−1(λj+1xj+1 + . . .+ λrxr).

Then, x ∈ conv M1 ∩ conv M2 for
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M1 := {x1, . . . , xj} , M2 := {xj+1, . . . , xr}.

(b) We prove the uniqueness only in case (a); case (b) is proved similarly. First, assume
r = n+ 2 and no n+ 1 points are affinely dependent. Suppose that

M̃1 = {x1, . . . , xik}, M̃2 = {xik+1
, . . . , xin+2}

is a second Radon partition of M and

y ∈ conv M̃1 ∩ conv M̃2.

Then,

y = µ−1(µ1xi1 + . . .+ µkxik = −µ−1(µk+1xik+1
+ . . .+ µn+2xin+2)

where µ1 > 0, . . . , µk > 0;µk+1 ≤ 0, . . . , µn+2 ≤ 0; k ≥ 1 , and µ = µ1 + . . . + µk =
−µk+1 − . . .− µn+2. We may assume

xi1 = xj+1 (∈ M2)

We choose 0 < α < 1 such that

αλ−1λj+1 + (1− α)µ−1µ1 = 0

Then,

αλ−1(λ1x1 + . . .+ λn+2xn+2)

+ (1− α)µ−1(µ1x1 + . . .+ µn+2xin+2) = 0 + 0 = 0

and

αλ−1(λ1 + . . .+ λn+2) + (1− α)µ−1(µ1 + . . .+ µn+2) = 0.

expresses an affine relation between n+ 1 of the points of M (xi1 and xj+1 cancel out ),
unless all coefficients vanish. Therefore, λφ = −α−1(1 − α)λµ−1µiφ , φ = 1, . . . , n + 2 , and
there is a map φ 7→ φ′, φ ∈ {1, . . . , j, j + 2, . . . , n + 2}, φ′ ∈ {i2, . . . , n + 2} such that
λφ = −α−1(1 − α)λµφ′ . Since α−1 > 0, 1 − α > 0, and λ > 0, the set of those φ′ for which
µφ′ < 0 is the same as the set of those φ for which λφ > 0. Therefore M1 = {x1, . . . , xj} =
{xik+1

, . . . , xin+2} = M̃2 and consequently M2 = M̃1 ,too.
To prove the converse, we distinguish these two cases.

(I) r = n+ 2, and x1, . . . , xn+1 are affinely dependent,
◦
M := {x1, . . . , xn+1}.

(II) r > n+ 2.

In case I,
◦
M is contained in a hyperplane so that, by (a), we find a partition of

◦
M into

◦
M1,

◦
M2 with conv

◦
M1∩ conv

◦
M2 ̸= ∅. Then,

◦
M1 ∪{xn+2} ,

◦
M2 and

◦
M1 ,

◦
M2 ∪{xn+2} are two

different Radon partitions of M .
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In case II, consider a proper subset M̃ of M which has at least n+2 points. Let M̃1, M̃2

be a Radon partition of M̃. Then, M̃1 ∪ (M\M̃), M̃2 and M̃1, M̃2 ∪ (M\M̃) are different
Radon partitions of M .

□

2.3 Theorem (Caratheodory’s theorem).
(a) The convex hull conv M of a set M ⊂ Rn is the union of all convex hulls of subsets of
M containing at most n+ 1 elements.
(b) The positive hull pos M of a set M ⊂ Rn is the union of all positive hulls of subsets of
M containing at most n elements of M .

Proof:
(a) Let

x = λ1x1 + . . .+ λrxr ∈ conv M ,

and let r be the smallest number of elements of M of which x is a convex combination.
Contrary to the claim, r ≥ n+ 2 implies there exists an affine relation

µ1x1 + . . .+ µrxr = 0, with µ1 + . . .+ µr = 0, but not all µj = 0.

For µj ̸= 0, we obtain from (1) and (2)

x = λ1x1 + . . .+ λrxr =

(
λ1 −

λj

µj

µ1

)
x1 + . . .+

(
λr −

λj

µj

µr

)
xr.

We may assume µj > 0, and, for all µk > 0, k = 1, . . . , r,

λj

µj

≤ λk

µk

.

Then,

λi −
λj

µj

µi ≥ 0 for i = 1, . . . , r.

Since λj − λj

µj
µj = 0, equation (3) expresses x as a convex combination of less than r

elements of M , a contradiction of the initial assumption.
(b) Replace in the proof of (a) ”convex combination” by ”positive linear combination”

and ”affine dependence of n+1 elements” by ”linear dependence of n elements” to obtain a
proof of (b).

□

Exercises

1. In analogy to the above examples in Figure 4, find all types of Radon partitions of
n+ 2 points in Rn whose affine hull is Rn.
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2. If aff M = Rn, then, conv M is the union of n−simplices with vertices in M .

3. Every n−dimensional convex polytope is the union of finitely many simplices, no two
of which have an interior point in common.

4. Helly’s Theorem. Suppose every n + 1 of the convex sets K1, . . . , Km in Rn has a
nonempty intersection, m ≥ n + 1. Then

⋂m
i=1Ki ̸= ∅. (Hint: For m = n + 1 there is

nothing to prove. Apply induction on m and use Radon’s Theorem).

Nearest point map and supporting hyperplanes

Quite a few properties of a closed convex set K can be studied by using the map that assigns
to each point in Rn its nearest point on K. First, we show that this map is well defined.
3.1 Lemma. Let K be a closed convex set in Rn. To each x ∈ Rn there exists a unique
x′ ∈ K such that

∥x− x′∥ = inf
y∈K

∥x− y∥. (*)

Proof: The existence of an x′ satisfying (∗) follows from K being closed. Suppose that, for
x′′ ∈ K, x′′ ̸= x′ ,

∥x− x′′∥ = inf
y∈K

∥x− y∥.

Consider the isosceles triangle with vertices x, x′, x′′. The midpoint m = 1
2
(x′ + x′′) of

the line segment between x′ and x′′ is, by convexity, also in K, but satisfies

∥x−m∥ < inf
y∈K

∥x− y∥ ,

a contradiction.

□

3.2 Definition. The map

pK : Rn → K

x 7→ pK(x) = x′

of lemma 3.1 is called the nearest point map relative to K.
Clearly,
3.3 Lemma.

1. (a) pK(x) = x if and only if x ∈ K;

2. (b) pK is surjective.
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Generalizing the concept of a tangent hyperplane is the following.

3.4 Definition. A hyperplane H is called a supporting hyperplane of a closed convex
set K ⊂ Rn if K ∩H ̸= ∅ and K ⊂ H− or K ⊂ H+.

We call H− (or H+, respectively) a supporting half-space of K (possibly K ⊂ H).
If u is a normal vector of H pointing into H+(or H−, respectively), we say that u is an

outer normal of K (Figure 5), and −u an inner normal of K.

3.5 Lemma. Let ∅ ≠ K ⊂ Rn be closed and convex. For every x ∈ Rn\K the hyperplane
H containing x′ := pK(x) and perpendicular to the line joining x and x′ is a supporting
hyperplane of K described by H = {y | ⟨y, u⟩ = 1}, for u = x−x′

⟨x′,x−x′⟩ , unless H contains 0.

Proof: The hyperplane H := {y | ⟨y, u⟩ = 1} (u as before) is perpendicular to x − x′ and
satisfies x′ ∈ H. Moreover, ⟨x − x′, x − x′⟩ > 0 implies ⟨x, x − x′⟩ > ⟨x′, x − x′⟩ and,
thus, x ∈ H+. Suppose H is not a supporting hyperplane of K. Then there exists some
y ∈ K ∩ (H+\H), y ̸= x. By elementary geometry applied to the plane E spanned by x, x′,
and y, the line segment [y, x′] contains a point z interior to the circle in E about x with
radius ∥x− x′∥. Then, ∥x− z∥ < ∥x− x′∥ , a contradiction.

3.6 Lemma. Let K ⊂ Rn be closed and convex, and let x ∈ Rn\K. Suppose y lies on
the ray emanating from x′ and containing x. Then x′ = y′.
Proof: First, assume y ∈ [x, x′]. Then in the case x′ ̸= y′ ,

∥x− x′∥ = ∥y − x′∥+ ∥x− y∥ > ∥y − y′∥+ ∥x− y∥ ≥ ∥x− y′∥ ,

a contradiction.
If x ∈ [y, x′], x′ ̸= y′, then, the line parallel to [y, x′] through x meets [x′, y′] in a point

x0 ̸= x′. From ∥x− x0∥ = ∥x− x′∥ ∥y−y′∥
∥y−x′∥ (similar triangles) and ∥y− y′∥ < ∥y− x′∥ (Lemma

3.1), we obtain ∥x− x0∥ < ∥x− x′∥, a contradiction.

□

3.7 Lemma (Busemann and Feller’s lemma). pK does not increase distances, and, hence,
is Lipschitz with Lipschitz constant 1. In particular, pK is uniformly continuous.

Proof: Let x, y ∈ Rn\K. For pK(x) = pK(y), the lemma is trivial; so, suppose pK(x) ̸=
pK(y), and let g be the line through x′ := pK(x) and y′ := pK(y). We denote by H1, H2 the
hyperplanes perpendicular to g in x′, y′, respectively.

Neither of x and y lies in the open stripe S bounded by H1 and H2, for if, say, x does,
the foot x0(orthogonal projection) of x on g lies in K, and then

∥x− x0∥ < ∥x− x′∥ ,

a contradiction. Also, the points x, y cannot lie on the same side of H1 or H2 opposite to
S since [x, x′]∩ (S\K) ̸= ∅ or [y, y′]∩ (S\K) ̸= ∅ would contradict what we have just shown
and Lemma 3.6.
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3.8 Theorem. A closed convex proper subset of Rn is the intersection of its supporting
half-spaces.

Proof: By Lemma 3.5, there exists a supporting half-space of K. Let K ′ :=
⋂
H+ for all

supporting half-spaces H+ of K. Clearly, K ⊂ K ′.
Suppose x ∈ K ′\K. Then pK(x) ̸= x and, hence, by Lemma 3.5, the hyperplane per-

pendicular in pK(x) to the line joining x and pK(x) separates x and K, so that x /∈ K ′, a
contradiction.

□

Remark. In general, not all supporting half-spaces of K are needed to represent K as
their intersection. A triangle in R2, for example, has infinitely many supporting half-places,
but three half-planes already suffice to represent the triangle as their intersection.

3.9 Theorem. Any closed convex set K possesses a supporting hyperplane at each of its
boundary points.

Proof: Suppose x0 ∈ ∂K is a boundary point of K, that is, any open disc Uδ with center
x0 and radius δ > 0 contains points from Rn\K. Then, x0 is the limit point of a sequence
{xj} → x0 with xj ∈ ∂K, such that there exist supporting hyperplanes Hi of K at xi

according to Lemma 3.5. Let si be the ray of outer normals of Hi in i = 1, 2, . . . , and let S
be a sphere with center x0.

For sufficiently large i, si ∩ S is a point yi, and xi = pK(yi) by Lemma 3.6. {yi} has
a cluster point y0 ̸= x0. Since pK is a continuous (Lemma 3.7), pK(y0) = x0 and y0 /∈ K
otherwise pK(y0) = y0 = x0 would follow. Therefore, Lemma 3.5 applies, and the theorem
follows.

□

Exercises

1. Let K ⊂ Rn be closed and convex. Then, dim K = k if and only if, for any x ∈rint K,
the set p−1

K (x) is an (n− k)−dimensional affine space, 0 ≤ k ≤ n.

2. Every closed convex set is the intersection of countably many of its supporting half-
spaces.

3. Let M ⊂ Rn be compact. pos M has an apex if 0 /∈ conv M .

4. A closed set K ⊂ Rn that possesses a well-defined nearest point map is convex. (Hint:
Reduce the problem to n = 2. Use increasing sequences B1 ⊂ B2 ⊂ . . . of circular discs
Bj ⊂ R2\K , j = 1, 2, . . ..
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Faces and normal cones

Although faces and normal cones will mainly be used in the special case of polytopes, we
introduce them for closed convex sets. This lets us see properties specific to polytopes.

4.1 Definition. If H is a supporting hyperplane of the closed convex set K, we call
F := K ∩H a face of K. By convention, ∅ and K are called improper faces of K.

If we speak about faces, it should be clear from the context whether we include ∅ or K
or not.

By Lemma 1.2,

4.2 Lemma Every face of a closed convex set K is again a closed convex set.

So we can speak about the dimension of a face. Recall the convention dim ∅ = −1.

4.3 Definition. By a k−face F of K, we mean a face of dimension k. We call F

• (a) a vertex of K, if k = 0

• (b) an edge of K, if k = 1,

• (c) a facet of K, if k = dim K − 1.

We denote the set of vertices of K by vert K.
4.4 Lemma. Let F0 and F1 be faces of a closed convex set K such that F0 ⊂ F1. Then,

F0 is a (possibly improper) face of F1.

Proof: Let F0 = K ∩H0, where H0 is a supporting hyperplane of K and, hence, also of F1.
Then,

F1 ∩H0 ⊂ K ∩H0 = F0 ⊂ F1 ∩H0 ,

hence, F0 = F1 ∩H0 which proves the lemma.

□

Remark. The converse of Lemma 4.4 is false. As Figure 6 illustrates, F0 can be a face
of F1, F1 a fake of K, but F0 cannot be a face of K. For a polytope, however, the converse
of Lemma 4.4 is true (see Chapter II, Theorem 1.7).

Now, we will generalize Lemma 4.4.
4.5 Lemma. If F1, . . . , Fr are faces of a closed convex set K, then, F := F1 ∩ . . . ∩ Fr

is also a (possibly improper) face of K.

Proof: Since being a face is not affected by doing so, we may assume 0 ∈ F (unless F = ∅
in which case there is nothing to prove).
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Let Hi = {x | ⟨x, ui⟩ = 0} be a supporting hyperplane of K such that Fi = K ∩Hi, i =
1, . . . , r. By possibly changing signs of some of the ui, we can arrange

K ⊂ H−
i = {x | ⟨x, ui⟩ ≤ 0}, i = 1, . . . , r.

We set u := u1+ . . .+ur. If necessary, we can replace u1 by 2u1 so that u ̸= 0 can always
be assumed. We find

⟨x, u⟩ = ⟨x, u1⟩+ . . .+ ⟨x, ur⟩ ≤ 0 for all x ∈ K.

Therefore, H := {x | ⟨x, u⟩ = 0} is a supporting hyperplane of K. Moreover, ⟨x, u⟩ = 0
is true if and only if ⟨x, u1⟩ = . . . = ⟨x, ur⟩ = 0. Hence,

x ∈ K ∩H if and only if x ∈ (K ∩H1) ∩ . . . ∩ (K ∩Hr) = F.

4.6 Lemma.

1. Suppose F is a face of the closed convex set K and x, x̃ ∈ rint F . Then, any supporting
hyperplane of K at x also contains x̃.

2. If F, F ′ are faces of K and (rint F ) ∩ (rint F ′) ̸= ∅, then, F = F ′.

Proof:

1. (a) The line segment [x, x′] is properly contained in a line segment [y, y′] ⊂ rint F .
Should a supporting hyperplane at x not contain x̃ two of the points x̃ and y, ỹ, would
be separated, a contradiction.

2. (b) is obvious.

4.7 Definition. Let x be a point of the closed convex set K. We call

N(x) := −x+ p−1
K (x)

the normal cone of K at x.
4.8 Lemma. N(x) is a closed convex cone; it consists of 0 and all outer normals of K

in x. If x ∈ int K, then, N(x) = {0}.

Proof: First, note that N(x) is, indeed, a cone. From Lemmas 3.5 and 3.6, we deduce the
second part of the lemma. p−1

K (x) and, hence, −x + p−1
K (x) is closed since pK is continuous

(Lemma 3.7). To show that N(x) is convex, we arrange for x = 0 with a translation. Then,
for u, v ∈ N(0), we may assume ⟨K, u⟩ ≤ 0 and ⟨K, v⟩ ≤ 0, so that

⟨K,λu+ (1− λ)v⟩ ≤ 0 for 0 ≤ λ ≤ 1;

hence, λu+ (1− λ)v ∈ N(0).

□
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4.9 Definition. Let σ be a cone. Then,

σ̌ := {y | ⟨σ, y⟩ ≥ 0}

is called the dual cone of σ (Figure 7).

Lemma 4.8 implies Lemmas 4.10 and 4.11.

4.10 Lemma. If σ is a cone with apex 0, then N(0) = −σ̌(σ̌ reflected in 0).

4.11 Lemma. Let F be a face of the closed convex set K. For x, x̃ ∈ rint F ,
N(x) = N(x̃).

Proof: This follows readily from Lemma 4.6.

4.12 Definition. If F is a face of a closed convex set K and x ∈ rint F , then N(x) is
denoted by N(F ) and is called the cone of normals of K in F .

4.13 Theorem. Let K be a convex body in Rn and x(F ) one of the relative interior points
of a face F ̸= ∅ of K. Then, {rint N(x(F )) | F a face of K} = { rint N(F ) | F a face of K}
is a partition (disjoint covering) of Rn.

Proof: Let 0 ̸= u ∈ Rn. SinceK is bounded, there exists a hyperplaneH(α, u) = {z | ⟨z, u⟩ =
α} such that K ⊂ H−(α, u). Put H− =

⋂
α H

−(α, u), the intersection taken for all α, such
that K ⊂ H−(α, u). Clearly, H− is again a closed half-space and F := H ∩ K ̸= ∅. For
x(F ) ∈ rint F , u ∈ rint N(x(F )); this is elementary in every plane passing through x(F )
and containing u; hence, it carries over the general situation. So, every u ̸= 0 occurs in some
cont rint N(x(F )). Also, the point 0 occurs in rint N(x(K)) since, for x ∈ rint K, the cone
N(x) is a linear space (= {0} if dim K = n).

Suppose y ∈ rint N(x(F1))∩ rint N(x(F2)). Then, pK(y + x(F1)) = x(F1) and pK(y +
x(F2)) = x(F2) so that, by Lemma 3.5, the supporting hyperplanes in x(F1) and x(F2)
coincide. This implies F1 = F2.

□

4.14 Definition. Σ(K) denotes the set of all cones N(F ) and is called the fan of K
(see Figure 8).

Exercises

1. Let K be convex and closed, int K ̸= ∅, and let L be an affine subspace such that L∩
int K = ∅, L ∩ K ̸= ∅. Show that there exists a supporting hyperplane of K which
contains L.

2. Characterize convex polytopes which have the same fan.

13



Support function and distance function

Now we will generalize the linear function h{a} := ⟨a, ·⟩ for arbitrary compact subsets K of
Rn :
5.1 Definition. Let K ⊂ Rn be a nonempty convex body. The map

hK : Rn → R defined by u 7→ sup
x∈K

⟨x, u⟩

is called the support function of K. The next statement is an obvious consequence of the
definition.

5.2 Lemma. If K + a is a translate of the convex body K, then,

hK+a(u) = hK(u) + ⟨a, u⟩ for all u ∈ Rn.

Example 1. For n = 1, set K = [c, d]. Then

h[c,d](u) =

{
⟨d, u⟩ for u ≥ 0

⟨c, u⟩ for u ≤ 0

5.3. Lemma.

1. For every fixed nonzero u ∈ Rn, the hyperplane

HK(u) := {x | ⟨x, u⟩ = hK(u)} , (*)

is a supporting hyperplane of K.

2. Every supporting hyperplane of K has a representation of the form (∗).

Proof:

1. (1) Since K is compact and ⟨·, u⟩ is continuous, for some x0 ∈ K,

⟨x0, u⟩ = hK(u) = sup
x∈K

⟨x, u⟩.

For an arbitrary y ∈ K, it follows that ⟨y, u⟩ ≤ ⟨x0, u⟩; hence K ⊂ H−
K(u). This proves

(1).

2. (2) Let H = {x | ⟨x, u⟩ = ⟨x0, u⟩} be a supporting hyperplane of K at x0. We choose
u ̸= 0 such that K ⊂ H−. Then, ⟨x0, u⟩ = supx∈K⟨x, u⟩ = hK(u) which implies (2).

□
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5.4 Definition. A function f : Rn → R is said to be convex if, for all 0 ≤ λ ≤ 1 and
x, y ∈ Rn ,

f(λx+ (1− λ)y ≤ λf(x) + (1− λ)f(y).

Note that if f is convex and L is an affine subspace of Rn, then, f |L is also convex.
Example 2. For n = 1 and x, y ∈ R, the graph Γ(f) of a convex function f lies ”below”
the line-segment [(x, f(x)), (y, f(y))] in R2. Hence for convex f , if a ≤ −1 < b < 0, f(b) = 1,
and f(0) = 0, then, (a, f(a)) and (−b,−f(−b)) are ”above” the line through (b, 1) and (0, 0),
so that f(a) ≥ −1

b
and f(b) ≥ −f(−b).

5.5 Definition. A function f : Rn → R is called positive homogeneous if, for any λ ≥ 0
and x ∈ Rn ,

f(λx) = λf(x).

5.6 Lemma. A positive homogeneous function f : Rn → R is convex if and only if

f(x+ y) ≤ f(x) + f(y) for all x, y ∈ Rn (1)

Proof: Let the positive homogeneous function f be convex. Then (1) follows from

1

2
f(x+ y) = f(

1

2
x+

1

2
y) ≤ 1

2
f(x) +

1

2
f(y).

Conversely, if (1) holds for f , then, for 0 ≤ λ ≤ 1 ,

f(λx+ (1− λ)y) ≤ f(λx) + f((1− λ)y) = λf(x) + (1− λ)f(y) ,

so f is convex.

□

5.7 Lemma.

1. A function f : Rn → R is convex if and only if, for every convex combination x =
λ0x0 + . . .+ λnxn, λ0 ≥ 0, . . . , λn ≥ 0, λ0 + . . .+ λn = 1 of points x0, . . . , xn

f(x) ≤ λ0f(x0) + . . .+ λnf(xn). (1)

2. Every convex function f : Rn → R is continuous.

3. f : Rn → R is convex if and only if Γ+(f) := {(x, ξ) | x ∈ Rn, ξ ∈ R, f(x) ≤ ξ} is a
closed and convex subset of Rn+1.

4. A positive homogeneous function f : Rn → R is convex if and only if Γ+(f) is a closed
convex cone.

Proof:

15



1. (1) If eq. (1) is true, we obtain, for x1 = . . . = xn (using 1− λ0 = λ1 + . . .+ λn),

f(λ0x0 + (1− λ0)x1) ≤ λ0f(x0) + (1− λ0)f(x1),

so that f is convex.

If conversely, f is convex, we proceed by induction and assume f satisfies (1) (with
n replaced by n − 1) on each (n − 1)−dimensional affine subspace of Rn. Then, for
λ0 < 1 and y := (1 − λ−1

) (λ1x1 + . . . + λnxn) = (λ1 + . . . + λn)
−1(λ1x1 + . . . + λnxn),

we find

f(λ0x0 + . . .+ λnxn) = f(λ0x0 + (1− λ0)y)

≤ λ0f(x0) + (1− λ0)f(y)

≤ λ0f(x0) + (λ1 + . . .+ λn)

( n∑
i=1

(λ1 + . . .+ λn)
−1λif(xi)

)
= λ0f(x0) + λ1f(x1) + . . .+ λnf(xn) ,

so that (1) follows.

2. (2) Given a point x0 in Rn, we consider a regular n−simplex T :=conv {x1, . . . , xn+1}
which possesses x0 as center of gravity and for which ∥x1−x0∥ = . . . = ∥xn+1−x0∥ = 1.
We set d := max{|f(x1)−f(x0)|, . . . , |f(xn1)−f(x0)|}. Let x lie in a δ0−neighborhood
Uδ0(x0) of x0 such that Uδ0(x0) ⊂ T . Since T is covered by n−simplices Ti :=conv
{x0, . . . , xi−1, xi+1, . . . , xn+1}, i = 1, . . . , n + 1, we may assume x to line in one of the
Ti, say in Tn+1, x = λ0x0 + . . .+ λnxn , λ0 ≥ 0, . . . , λn ≥ 0, λ0 + . . .+ λn = 1. Clearly,
λi < δ0 ≤ 1 , i = 1, . . . , n. We may assume f(x) ≥ 0 in T (up to adding a constant).
Given ϵ > 0, we may choose δ := ϵ

n(d+1)
and obtain (using (1) and assuming δ ≤ δ0)

|f(x)− f(x0)| ≤ |λ0f(x0) + . . .+ λnf(n)− f(x0)|
= |λ1(f(x1)− f(x0)) + . . .+ λn(f(xn)− f(x0))|

≤ (λ1 + . . .+ λn)d < nδ(d+ 1) = ϵ.

Therefore, f is continuous.

3. (3) let f be convex. Given (x, ξ), (y, η) ∈ Γ+(f), 0 ≤ α ≤ 1 ,

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) ≤ αξ + (1− α)η;

hence,

α(x, ξ) + (1− α)(y, η) = (αx+ (1− α)y, αξ + (1− α)η) ∈ Γ+(f).

Therefore, Γ+(f) is convex. From (2), it readily follows that Γ+(f) is also closed. The
arguments may, obviously, be reversed.
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4. (4) Consider if f is homogeneous and convex, the closed set Γ+(f) is a cone. If,
conversely, Γ+(f) is a closed and convex cone, f is homogeneous, and by (3), convex.

□

Remarks.

1. By Caratheodory ’s theorem, in (a) we may choose x to be a convex combination of
an arbitrary number of points.

2. If, in the definition of a convex function, Rn is replaced by a closed convex subset of
Rn, (2) and (3) need no longer be true. Example: Let the subset be the closed unit
ball B of Rn , and let f(x) = 0 for x ∈ int B, f(x) = 1 for x ∈ ∂B.

5.8 Lemma. The support function hK of a convex body K is positive homogeneous and
convex.

Proof: Let λ ≥ 0. It’s easy to see

hK(λu) = sup
x∈K

⟨x, λu⟩ = λ sup
x∈K

⟨x, u⟩ = λhK(u).

Hence, hK is positive homogeneous.

From ⟨x, u⟩ ≤ hK(u), ⟨x, v⟩ ≤ hK(v) ∀x ∈ K, we obtain

⟨x, u+ v⟩ ≤ hK(u) + hK(v) for all x ∈ K.

Hence,

hK(u+ v) = sup
x∈K

⟨x, u+ v⟩ ≤ hK(u) + hK(v).

Therefore, by Lemma 5.6, hK is convex.

□

5.9 Lemma. hK is linear on each cone of the fan Σ(K) of K.

Proof: All points u in a fixed cone σ of Σ(K) have the same nearest point x0 := pK(u). As
in the proof of Lemma 5.3(b) we obtain

hK |σ = ⟨x0, ·⟩|σ.

5.10 Definition. Let K be an n−dimensional convex body in Rn, and let 0 ∈ int K. Then
we can denote the map as

dK : Rn → R

defined by
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dK(λx̃) := λ , for x̄ ∈ ∂K and λ ≥ 0 ,

is called the distance function of K.

We can show that dK is well defined (part (b) of the following lemma).

5.11 Lemma. Let K be an n−dimensional convex body in Rn.

1. If a line g intersects ∂K in three different points, then, g is contained in a supporting
hyperplane of K, so, in particular, g ∩ int K = ∅.

2. Any ray emanating from a point in int K intersects a K in one and only one point.

Proof:

1. Let A,B,C ∈ g ∩ ∂K , and let B lie between A and C. We consider a supporting
hyperplane H = {x | ⟨x, u⟩ = c} of K in B. If H did not contain both A and C, it
would separate these points properly, which contradicts the definition of a supporting
hyperplane.

2. Let y ∈ int K, σ be a ray emanating from y, and h be the line that contains σ. The
intersection h ∩ K is a convex body, hence, a line segment [y0, y1]. Either y0 or y1
equals σ ∩ ∂K.

□

5.12 Lemma. The distance function dK is positive homogeneous and convex.

Proof: By definition, dK is positive homogeneous.
To prove convexity, let dK(x) = λ, dK(y) = µ. If λ = 0 or µ = 0, then x = 0 or y = 0,

and there is nothing to prove. So, let us consider λ, µ ̸= 0. Take δ := µ
λ+µ

, we obtain

(1− δ)x̄+ δȳ ∈ K, for λx̄ = x, µȳ = y , hence,

1 ≥ dK((1− δ)x̄+ δȳ) = dK(
λ

λ+ µ
x̄+

µ

λ+ µ
ȳ) = dK(

1

λ+ µ
(x+ y))

=
1

λ+ µ
dK(x+ y) ,

hence, dK(x+ y) ≤ λ+ µ = dK(x) + dK(y). So dK is convex by Lemma 5.6.

□
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5.13 Definition. A convex body K is called centrally symmetric if it is mapped onto itself
by a reflection in a point c (which assigns to each x = c+(x−c) the point c−(x−c) = 2c−x.
We call c the center of K.

From the above lemmas, we can derive Theorem 5.14.

5.14 Theorem. Let K be a centrally symmetric convex body with 0 ∈ int K as its enter.
Then, dK defines a norm on the vector space Rn, that is, a map

dK = ∥ · ∥ : Rn → R

satisfying, for all x, y ∈ Rn and λ ∈ R.

• ∥x∥ = 0 if and only if x = 0 ,

• ∥λx∥ = |λ| · ∥x∥ ,

• ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Example 3. The “maximum norm” in R2 is of the form

dK(x) := max{|x1|, |x2|}

where x = (x1, x2) and K is the square with vertices (1, 1), (1,−1), (−1, 1), (−1,−1).

Example 4. Consider the “Manhattan norm” dK′(x) := |x1|+ |x2| where K ′ is the square
with vertices (1, 0), (0, 1), (−1, 0), (0,−1).

In the following section, I will provide explanation into how these norms in the above
examples are interconnected.
Exercises

Polar bodies

Let us consider the polarity π in Rn with respect to the unit sphere S := {x | ⟨x, x⟩ = 1}. It
assigns to every affine subspace W of Rn with 0 /∈ W a subspace π(W ) of of Rn of dimension
n− 1− dim W : If 0 ̸= u is a point in Rn, then,

π(u) = Hu := {x | ⟨x, u⟩ = 1}.

If the affine subspaces U and V which generate W are not parallel and if W does not
contain 0, then, π(W ) = π(U) ∩ π(V ). Note that π ◦ π is the identity.

The exceptional role of the point 0 can be avoided by going over to the projective ex-
tension of RN by adding a “hyperplane at infinity”, H∞. Then, π(0) = H∞. That will be
needed, for example, in Lemma 3.

6.1 Definition. Let 0 ∈ int K, where K is a convex body. Then, for u ̸= 0, the half-spaces
H−

u which contain 0 and, for H−
0 := Rn ,
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K∗ :=
⋂
u∈K

H−
u

is called the polar body of K. Clearly then, we see that 0 ∈int K∗ and K∗ =
⋂

u∈∂K H−
u ,

since 0 ∈ int K.

6.2 Definition. We will represent the points of Rn ∪H∞ by the one-dimensional subspaces
of Rn+1 such that the points of H∞ are spanned by vectors (0, . . . , 0, ξ), ξ ̸= 0. Then, a
linear transformation of Rn+1 up to multiplication by a nonzero factor is called a projective
transformation of Rn ∪ H∞. It is called permissible with respect to the convex bodyK ⊂ Rn

∪ H∞, if H∞ is mapped onto a hyperplane disjoint from K.

6.3 Lemma. If the convex body K is so translated to τ(K) that 0 remains in the interior,
then, (τ(K))∗ is obtained from K∗ by a permissible projective transformation.

Proof: This follows from general facts on projective transformations.

□

6.4 Theorem. Let K be a convex body with 0 ∈ int K. Then,

1. K∗∗ = K;

2. The distance function of K equals the support function of K∗, and, conversely

dK = hK∗ d∗K = hK .

Proof.

• By definition of Hu, for every u ̸= 0 of K,

H−
u = {x | ⟨u, x⟩ ≤ 1}

Therefore, using the obvious notation of ⟨K, x⟩ ≤ 1, we can write K∗ as

K∗ = {x | ⟨K, x⟩ ≤ 1} and K∗∗ = {y | ⟨K∗, y⟩ ≤ 1}.

If y ∈ K, then, the definition of K∗ yields ⟨y,K∗⟩ ≤ 1 and, thus, K ⊂ K∗∗. Suppose
K ̸= K∗∗. Then, let x ∈ K∗∗\K. For

x′ := pK(x) and u :=
x− x′

⟨x′, x− x′⟩
,

Invoking Lemma 3.5 yields
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x ∈ H+
u \Hu , but also K ⊂ H−

u ,

whence u ∈ K∗. Since x ∈ K∗∗, it follows that ⟨u, x⟩ ≤ 1,i.e., x ∈ H−
u , a contradiction.

Thus we’ve proved part (a), but need two supporting lemmas to prove (b) first.

□

6.5 Lemma. Let K1, K2 be convex bodies such that 0 ∈ int K1 and K1 ⊂ K2. Then,
K∗

2 ⊂ K∗
1 .

Proof: If y ∈ K∗
2 , then, ⟨K2, y⟩ ≤ 1, hence, in particular, ⟨K1, y⟩ ≤ 1. This implies y ∈ K∗

1 .

6.6 Lemma. If x ∈ ∂K, 0 ∈ int K, then, Hx is a supporting hyperplane of K∗.

Proof: We know that K∗ =
⋂

x∈∂K H−
x . For every x ∈ ∂K, there exists a βx ∈ R≥1 such

that Hβ,x is a supporting hyperplane of K∗. Thus, K̃ := conv({βxx | x ∈ ∂K}) includes K,
obtaining

K̃∗ =
⋂

y∈∂K̃

H−
y =

⋂
x∈∂K

H−
β,x ⊃ K∗ =

⋂
x∈∂K

H−
x .

Since, obviously, H−
βx,x

⊂ H−
x , we find that βx = 1 for every x ∈ ∂K.

□

Proof of (b) in Theorem 6.4. Let u ∈ Rn\{0}. We may assume u ∈ ∂K, hence, dK(u) = 1.
By Lemma 6.6, Hu is a supporting hyperplane of K

∗, and we obtain hK∗(u) = 1 from Lemma
5.3.

□

6.7 Theorem. Let K be a convex body in Rn with 0 ∈ int K. Set K+ := Γ+(dK) ⊂ Rn+1

(see Lemma 5.7) and H := {(x, 1) | x ∈ Rn}. Then,

1. ∂K+ is the graph of dK in Rn+1.

2. K+ ∩H is a translate of K.

3. K∗
+ ∩H is a translate of K∗.

4. K+, K
∗
+ are cones with apex 0 in Rn+1.

6.8 Theorem. Every positive homogeneous and convex function h : Rn → R is the support
function h = hK of a unique body K (whose dimension is possibly less than n).
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Proof. Let us write Rn = U
⊕

U⊥, where U is the maximal linear subspace of Rn on which
h is linear. Then, there exists a ∈ U such that, for (x, x′) ∈ U

⊕
U⊥,

h(x, x′) = ⟨x, a⟩+ h|U⊥(x′). (*)

Moreover, Γ+(h|U⊥) is a cone with apex 0 in U⊥⊕
R (see Lemma 5.7). Thus, there

exists some b ∈ U⊥ such that the hyperplane H := {(y, ⟨y, b⟩)|y ∈ U⊥} in U⊥⊕
R intersects

Γ+(h|U⊥) only in the apex. Now the set

K0 + (0, 1) := (U⊥ × {1}) ∩ Γ+(h|U⊥ − ⟨·, b⟩)

is a convex body and, by Lemma 5.2, h|U⊥−⟨·, b⟩, the support function of K0−b. Finally,
(∗) and Lemma 5.2 yield that h is the support function of K := K0 − b+ a.

□

Exercise

1. Let K be an unbounded closed convex set, dim K = n, and let 0 ∈ int K. We set
K∗ :=

⋂
u∈K

H−
u where H−

0 := Rn.

• Show that K∗ is a convex body,

• Must K∗∗ = K?

2 Combinatorial theory of polytopes and polyhedral

sets

2.1 The boundary complex of a polyhedral set

We will now turn to the specific properties of convex polytopes, or, briefly, polytopes. In
1.1 we introduced these as convex hulls of finite point sets in Rn. Our first aim is to show
that, equivalently, convex polytopes can be defined as bounded intersections of finitely many
half-spaces.

1.1 Theorem. Each polytope possesses only finitely many faces; they, too, are polytopes.

Proof: Let P = conv{x1, . . . , xr}, and let F := P ∩H be a face where H = {x | ⟨x, a⟩ = α}
is a supporting hyperplane of P such that P ⊂ H−. We may assume the following

x1, . . . , xs ∈ H; xs+1, . . . , xr ∈ int H−

and find
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⟨xi, a⟩ = α for i = 1, . . . , s

⟨xi, a⟩ = α− βi, βi > 0 for i = s+ 1, . . . , r.

Then, for

x = λ1x1 + . . .+ λrxr, λ1 + . . .+ λr = 1, λj ≥ 0, j = 1, . . . , r ,

⟨x, a⟩ =
r∑

i=1

λi⟨xi, a⟩ =
r∑

i=1

λiα−
r∑

i=s+1

λiβi = α−
r∑

i=s+1

λiβi.

Therefore, x ∈ H if and only if
∑r

i=s+1 λiβi = 0, which, in turn, is equivalent to λs+1 =
. . . = λr = 0. So, x is a convex combination of x1, . . . , xs. Hence H ∩ P = conv{x1, . . . , xs}
is a polytope.

Since only finitely many convex hulls of elements of {x1, . . . , xr} exist, the theorem fol-
lows.

□

1.2 Krein-Milman Theorem. Each polytope P is the convex hull of its vertices, that is,

P = conv(vert P ).

Proof: Obviously, we can see that conv(vert P ) ⊂ P . For the opposite inclusion, we may
assume that P = conv{x1, . . . , xr} and xi /∈ conv{x1, . . . , xi−1, xi+1, . . . , xr} =: Pi for 1 ≤
i ≤ r. Denote by qi := pPi

(xi) to be the image of xi under the nearest point map pPi
with

respect to Pi. By I, Lemma 5.3, the hyperplane Hi through qi with normal xi − qi is a
supporting hyperplane of Pi. We translate Hi by adding xi − qi and so obtain a supporting
hyperplane H ′

i of P for which

{xi} = H ′
i ∩ P

Therefore xi is a vertex of P . This implies P ⊂ conv(vert P ). Hence, the theorem
obviously follows.

□

1.3 Definition. The intersection of finitely many closed half-spaces in Rn is called a poly-
hedral set.

1.4 Theorem. Every polytope P is a bounded polyhedral set.

Proof: We may assume that aff P = Rn. Now let Fi := P ∩Hi to be the facets of P ((n −
1)−dimensional faces), and let P ⊂ H−

i , i = 1, . . . , s.
Obviously, P is contained in
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s⋂
i=1

H−
i =: P ′.

Suppose then that x0 ∈ P ′\P. Consider the union A of all affine subspaces of Rn spanned
by x0 and at most n− 1 vertices of P . Since A has no interior points, there exists

x ∈ (int P)\A.

The line segment [x, x0] is not contained in A and intersects ∂P in a point y. Since ∂P is
the union of all (proper) faces of P (I, Theorem 3.9), y is contained in a face F . From dim
F < n− 1 would follow x ∈ A, a contradiction. Therefore F is a facet, say F ′

0 and y ∈ rint
F . But, then, aff F0 would be one of the hyperplanes Hi, i ∈ {1, . . . , s}, and so, x0 /∈ P ′, a
contradiction to the initial assumption.

□

1.5 Theorem. Every bounded polyhedral set is a polytope.

Proof: We will proceed by induction on dim P , P := H−
1 ∩ . . . ∩ H−

i . Let us assume that
each of the (proper) faces Fj := Hj ∩P is a polytope. Replacing Rn by aff P we may assume
that P is of maximal dimension. Obviously,

conv

( s⋃
j=1

Fj

)
⊂ P ;

it suffices, thus, to show the opposite inclusion for int P . For x ∈ int P , fix a ray σ
emanating from x not parallel to any Hj for j = 1, . . . , s. Then, by I, Lemma 5.11, σ ∩ ∂P
consists of one point xσ. Since ∂P ⊂ ∪s

j=1Fj, the point xσ is contained in a face, say Fjσ .
The analogous statement holds for the ray opposite to σ. Since x ∈ [xσ, xτ ], we find x ∈
conv(Fjσ ∪ Fjτ ]), and, then,

int P ⊂ conv

( s⋃
j=1

Fj

)
.

□

We may then summarize Theorems 1.4 and 1.5 as follows:

polytopes = bounded polyhedral sets

1.6 Corollary. Any affine subspace L of Rn intersects a given polyhedral set (polytope) P
in a polyhedral set (polytope).

We are now ready to prove the converse of I, Lemma 4.4, in the case of polytopes.
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1.7 Theorem. Let P be a polyhedral set. If F1 is a face of P and F0 is a face of F1, then,
F0 is a face of P .

Proof: First, let us assume P to be bounded, that is, a polytope P and vertices P =:
{x1, . . . , xm}. We may assume that x1 = 0 ∈ F0 ̸= F1. There are linearly independent u0,
u1 such that, for Hi := {x | ⟨x, ui⟩ = 0}, i = 0, 1,

F0 = H0 ∩ F1, F1 ⊂ H−
0

F1 = H1 ∩ P, P ⊂ H−
1 .

We denote by x2, . . . , xs the vertices of P\F1, by xs+1, . . . , xt those of F1\F0. For i =
2, . . . , s, there exist points ui such that

Hi := lin({xi} ∪ (H0 ∩H1)) = {x | ⟨x, ui⟩ = 0}.
All ui lie in the plane (H0 ∩H1)

⊥; hence, we may assume that F1 ⊂
⋂s

i=2 H
−
i and that

all ui, considered as points, lie on the line g through u0 and u1,

ui = u0 + αi(u1 − u0), i = 2, . . . , s.

The ui’s even lie on the ray of g emanating from u1 and including u0, since αi ∈ R<1.
From xj ∈ H−

i , for j ∈ {s+ 1, . . . , t}, we see that

0 > ⟨xj, ui⟩ = (1− αi)⟨xj, u0⟩.
Since F1 ⊂ H−

0 implies ⟨xj, u0⟩ < 0, (1 − αi) > 0. Hence, there exists a point u ∈ g
separating u1 from {u2, . . . , us} properly, that is,

u = λiu1 + (1− λi)ui, for some 0 < λi < 1, i = 2, . . . , s.

The hyperplane H := {x | ⟨x, u⟩ = 0} is a supporting hyperplane of P with H ∩ P = F0.
For xj ∈ F1, we obtain

⟨xj, u⟩ = λi⟨xj, u1⟩+ (1− λi)⟨xj, ui⟩ = (1− λi)⟨xj, ui⟩ ≤ 0 ,

since F1 ⊂ H−
i . Thus, ⟨xj, u⟩ = 0 if and only if xj ∈ F0 ⊂ H0 ∩ H1. For xi ∈ vertices

P\F1, ⟨xi, u1⟩ < 0 and, thus

⟨xi, u⟩ = λi⟨xi, u− 1⟩+ (1− λi)⟨xi, ui⟩ = λi⟨xi, u1⟩ < 0 ,

which implies P ⊂ H− and P ∩H = F0.

If P is not a polytope, we choose a sufficiently large n−simplex S so that int S intersects
each face of P . Then, all bounded faces of P are contained in int S. If F is an unbounded
face of P , we find that F = P ∩ H, H is a supporting hyperplane of P , if and only if
F ∩ S = P ∩ S ∩H. Each face F of P intersects P ∩ S in a face F ′ := P ∩ S ∩ F of P ∩ S
such that dim F = dim F ′. So, the theorem readily follows from its validity for P ∩ S.

□
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