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Chapter 1

Mixed integer linear
programming: Introduction
and formulation

1.1 Mixed Integer Linear Programming

Let Rn be the n-dimensional Euclidean space. A general optimization prob-
lem deals with finding the “best solution” to a system of constraints, where
best is with respect to a objective function.

Definition 1.1 (Optimization problem in general form). Let n and m be
natural numbers. Let f : Rn → R and gi : Rn → R for all i ∈ {1, . . . ,m} be
real-valued functions. Then a general optimization problem is of the form:

sup g(x)
such that fi(x) ≤ 0 ∀i ∈ {1, 2, ...,m}

x ∈ Rn.
(1.1)

Henceforth we abbreviate ‘such that’ by ‘s.t.’. Note that we may substi-
tute sup by max whenever optimal solutions of (1.1) exist.

Definition 1.2 (Mixed integer linear program (MILP)). This is the class
of optimization problems with linear objective, linear constraints and some
variables are restricted to be integral, that is it is of the form:

max cTx
s.t. Ax ≤ b

x ∈ Zn1 × Rn2 ,
(1.2)

1



2 CHAPTER 1. FORMULATIONS

where Zn1 is the set of n1-dimensional integer vectors.

Observation 1.1. Notice that (1.2) is indeed a special form of (1.1). For
example, if xi ∈ Z, then we can rewrite this as sin(πxi) ≤ 0,−sin(πxi) ≤ 0.

We make a very important assumption through out for mixed integer
programming model (1.2). We will assume unless otherwise stated that
all data, that is c, A, b is rational. There are a number of reasons for
making this assumption. We do not expect to typically obtain real life MILP
instances with irrational data. Moreover, as can be seen in Homework 1 (also
see Fundamental Theorem of Integer Programming) without the rationality
assumption optimal solutions may not exist. Rationality of data assumption
is crucial for many integer programming (IP) theorems to hold.

Definition 1.3 (Pure IP, Binary MILP, Linear program). 1. If n2 = 0,
then the model (1.2) is called a pure integer programming (IP) model.

2. If we have a constraint 0 ≤ xi ≤ 1 for every integer variable xi, then
the model is called a binary mixed integer program. That is, in this
class of problems all the integer variables can take a value of either
0 or 1. This is one of the most prevalent classes of MILP models in
real-world applications.

3. If n1 = 0, then the model (1.2) reduces to an linear program (LP).

A class of problem that can usually be modeled as binary IPs is combi-
natorial optimization problem. Below we describe a generic combinatorial
optimization problem.

Definition 1.4 (Combinatorial optimization). Let G be a finite set, hence-
forth called the ground set. Let 2G denote the power set of the ground set
G. Let c : G→ R. Then a typical combinatorial optimization problem is of
the form:

max
∑

i∈b ci

s.t. b ∈ B,

where B ⊆ 2G. The input to the problem is G, c and B and the task is to
compute the optimal solution of the above problem.

Combinatorial problems have integer programming formulations.
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1.2 Some Pure IP Formulations

In this section, we will formulate pure IP models for some classic problems.

1.2.1 The Knapsack Problem

The binary knapsack problem is as follows: given a set of n items, each with
a utility ui and weight wi for i ∈ {1, . . . , n}, we must choose which items
are to be packed into the knapsack (which is another word for ‘backpack’)
such that we maximize the total utility, while ensuring that the total weight
of the items chosen does not exceed the (carrying) capacity W . This is
formulated as:

max
n∑
i=1

uixi

s.t.
n∑
i=1

wixi ≤W

xi ∈ {0, 1} ∀i ∈ {1, . . . , n}

1.2.2 Covering, Packing, Partitioning

Let G = {1, 2, . . . , n} and let {g1, . . . , gm} = T ⊆ 2G where 2G represents
the power set of G.

Definition 1.5. S ⊆ T is called a covering if

∪g∈Sg = G.

Definition 1.6. S ⊆ T is called a packing if

gu ∩ gv = ∅ ∀ gu, gv ∈ S.

Definition 1.7. S ⊆ T is called a partitioning if S is a covering and packing.

Model. Let us construct a matrix A ∈ {0, 1}n×m where:

Data : Aij =

{
1 if i ∈ gj
0 otherwise

V ariables : xj =

{
1 if gj ∈ S
0 otherwise
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These problems can be represented using the following model (1 is a vector
of all one’s).

• Covering: {x ∈ {0, 1}m|Ax ≥ 1}.

• Packing: {x ∈ {0, 1}m|Ax ≤ 1}.

• Partitioning: {x ∈ {0, 1}m|Ax = 1}.

1.2.3 The Assignment Problem

Given a set of n machines and n operators, such that a profit of pij is
obtained when operator i is assigned to machine j, the assignment problem
is to find the best possible assignment of operators to machines such that
each operator is assigned to only one machine and each machine is assigned
to exactly one operator.
Here, the decision variable used is:

xij =

{
1 if operator ‘i’ is assigned to machine ‘j’

0 otherwise
for i, j ∈ [n]

The formulation is as follows:

max
n∑
i=1

n∑
j=1

pijxij

s.t.
n∑
i=1

xij = 1 ∀j ∈ {1, . . . , n}

n∑
j=1

xij = 1 ∀i ∈ {1, . . . , n}

xij ∈ {0, 1} ∀i ∈ {1, . . . , n} ∀j ∈ {1, . . . , n}

This is an example partitioning IP.

1.2.4 Maximum Weighted Matching

Definition 1.8 (Matching). Given a graph G(V,E), a matching M is a
subset of edges (M ⊆ E) such that no vertex is incident to more than one
edge in the matching, i.e., the degree of each vertex in G(V,M) is at most
1.
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The maximum weighted matching problem (to find a matching such that
it maximizes the weight associated with it) is formulated below, where the
decision variable is defined as:

xe =

{
1 if edge e is in the matching

0 otherwise
for all e ∈ E

and the model is:

max
∑
e∈E

wexe

s.t.
∑
e∈δ(i)

xe ≤ 1 ∀i ∈ V (1.3)

xe ∈ {0, 1} ∀e ∈ E (1.4)

where δ(i) represents the set of all edges that are incident to the vertex i.
This is an example of packing type IP.
Remarks:

1. In the above formulation, if the inequality in (4.4) is replaced by∑
e∈δ(i) xe = 1, then the problem becomes a perfect matching problem.

2. The assignment problem is a special case of perfect matching on a
bipartite graph with G = (M ∪ W,E) and |M | = |W | = n, where
M and W are the set of machines and operators respectively. G is
a bipartite because every edge e ∈ E has one end point in the set of
machines and another in the set of operators.

1.2.5 Maximum Weight Forest

Definition 1.9 (Forest). An acyclic graph is called a forest.

Definition 1.10 (Tree). An acyclic connected graph is called a tree.

The maximum weighted forest problem is, given a graph G = (V,E) and
weights ce ∀e ∈ E associated with each edge, we must find a forest that
maximizes the total weight. The decision variable is:

xe =

{
1 if edge e is in the forest

0 otherwise
for all e ∈ E
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The problem is formulated as follows:

max
∑
e∈E

cexe (1.5)

s.t.
∑

e∈E(S)

xe ≤ |S| − 1 ∀S ⊆ V, |S| ≥ 3 (1.6)

xe ∈ {0, 1} ∀e ∈ E (1.7)

where E(S) is the set of edges where both vertices are in S. We will now
show that the above formulation is correct for the maximum weighted forest
problem.

Definition 1.11 (Degree of a vertex). The number of edges incident to a
vertex.

Lemma 1.1. If F is a non-empty forest, then there is at least one vertex in
F with degree equal to 1.

Proof. Assume by contradiction, that every vertex of F has a degree of 2 or
higher. Now, we pick any vertex v1 and we can find a neighboring vertex, say
v2 and in this way, we can construct a path v1−v2−v3−· · ·−vk− . . . . Since
the degree of every vertex is at least 2, we can always find a neighboring
vertex until we reach a vertex vi that has already been visited (since the
number of vertices is finite). This implies that the graph is cyclic, which
contradicts our assumption that F is forest.

Proposition 1.1. The constraints in (1.6) - (1.7) are satisfied for some x
if and only if x is a forest.

Proof. (⇒) Let F ⊆ E not be a forest. We need to show that x̂ corre-
sponding to F does not satisfy the constraints (1.6) and (1.7). Assume, by
contradiction, that x̂ satisfies the constraints (1.6) and (1.7). Since F is
not a forest then there is a cycle on the vertex set, say S. Then we have∑

e∈E(S) x̂e ≥ |S|, but this violates constraint (1.6) and we have a contra-
diction.

(⇐) Let F be a forest. We need to show that x corresponding to F satisfies
the constraints (1.6) and (1.7).

We prove this direction using induction on the size of the forest. Consider
the base case where n = 2 where n is the size of the forest. Clearly if x
corresponds to a forest on two nodes, it satisfies the constraints (1.6) and
(1.7).
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Assume that the statement holds for forests up to size N . We must show
that it holds for forests of size N + 1. From Lemma 1.1, we know that for a
non-empty forest, there exists at least one vertex of degree 1. Let’s call this
vertex U . Constraint (1.7) holds. We now proceed by examining constraint
(1.6) for different choices of S in the following cases:

1. S ⊆ V, U /∈ S
Also,

∑
e∈E(S) xe ≤ |S| − 1, from the induction hypothesis (the size

of the forest is now ‘N ′ because we have removed the isolated vertex)
and hence, the statement holds.

2. S ⊆ V, U ∈ S∑
e∈E(S) xe =

∑
e∈E(S\{U}) xe + 1 ≤ (|S| − 1− 1) + 1 = |S| − 1, where

the inequality is implied by the induction hypothesis.

1.3 Modeling Disjunction

1.3.1 Motivating Example

Consider (x, y) restricted to the feasible region of the union of the following
two polytopes.


x ≤ a
x ≥ 0

y ≤ d
y ≥ 0

or


x ≤ b
x ≥ a
y ≤ c
y ≥ 0

The union of the two polytopes could be modeled as the following. (Let
M = 2max{a, b, c, d})
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Figure 1.1: Union of two polytopes.

x ≤ a+Mz∗

−x ≤ 0 +Mz∗

y ≤ d+Mz∗

−y ≤ 0 +Mz∗

x ≤ b+M(1− z)∗∗

−x ≤ −a+M(1− z)∗∗

y ≤ c+M(1− z)∗∗

−y ≤ 0 +M(1− z)∗∗

z ∈ {0, 1}
x, y ∈ R

Correctness. If z = 1, the constraints of the type ∗∗ become equivalent
to the orange polyhedron while the other constrains become redundant. For
example the first constraint of x ≤ a + Mz is impled by the constraint
x ≤ b when z = 1. Similarly, if z = 0, the constraints of the type ∗
become equivalent to the blue polyhedron and the other constrains become
redundant.

1.3.2 Union of Polytopes

First Method (Big M Method)

Let the feasible region be the union of t polytopes, P 1, P 2, ..., P t where
P i := {x ∈ Rn|Aix ≤ bi} and Ai is a matrix of size mi × n.
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Lemma 1.2. There exists M < ∞ such that any x̂ ∈ ∪tj=1P
j satisfies the

system of inequalities Aix̂ ≤ bi +M1 for all i = 1, 2, . . . , t.

Proof. Clearly, the set x ∈ ∪tj=1P
j is bounded, i.e. there exists Q ∈ R+

such that if x ∈ ∪tj=1P
j , then ||x|| ≤ Q. Let

B = maxi∈{1,...t},j∈{1,...,mi}{|b
i
j |}

T = maxi∈{1,...t},j∈{1,...,mi}{‖A
i
j‖},

where Aij is the jth row of Ai and bij is the jth entry of bi. Set M := B+TQ.

Now let x̂ ∈ P i for some i ∈ {1, ..., t} and examine the jth constraint of the
system Akx ≤ bk +M1:

(Akj )
T x̂− bkj ≤ |(Akj )T x̂|+ |bkj | ≤ |Akj ||x̂|+ |bkj | ≤ TQ+B = M.

Thus any x̂ ∈ ∪tj=1P
j satisfies the system of inequalities Aix̂ ≤ bi +M1

for all i = 1, 2, . . . , t.

Now, we present the general model of the first method:

Aix ≤ bi +M1(1− zi) i = 1, ..., t∑
i

zi = 1

zi ∈ {0, 1} i = 1, ..., t

x ∈ Rn

where M satisfies the property mentioned in Lemma 1.2, i.e. any x̂ ∈
∪tj=1P

j satisfies the system of inequalities Aix̂ ≤ bi + M1 for all i =
1, 2, . . . , t.

Proposition 1.2. The above model is correct.

Proof. Let x ∈ P j . We show that there exists z such that the above model is
satisfied . Set zj := 1 and zi := 0 for all i 6= j. Then, we will have Ajx ≤ bj
and Aix ≤ bi +M1 ∀i 6= j which holds due to our choice of M .

On the other hand, if x 6∈ P i ∀i = 1, . . . , t, i.e., if x is not in any of
the polytopes, then we show that there is no z such that (x, z) satisfies the
constraints in the model. Assume by contradiction, that there exists a z such
that (x, z) satisfies the constraints. Then z ∈ {0, 1}n such that zi = 1 for
some i and 0 otherwise. Then, the inequality Aix ≤ bi is enforced. However,
x does not satisfy any of the constrains which is a contradiction. Hence, the
model is correct.
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Second Method

Lemma 1.3. Let {x |Ax ≤ b} is feasible and bounded. Then Ax ≤ 0 is
satisfied only for x = 0.

Proof. Clearly 0 satisfies Ax ≤ 0. No assume by contradiction, Au ≤ 0
where u 6= 0. Consider v ∈ {x |Ax ≤ b}. Then note that A(v + λu) ≤
b+λAu ≤ b for λ ≥ 0. Thus v+λu ∈ {x |Ax ≤ b} for arbitrary large values
of λ. This {x |Ax ≤ b} is not bounded, a contradiction.

Here is the model of the second method:

Aixi ≤ bizi ∀i ∈ [t]

x =
t∑
i=1

xi

t∑
i=1

zi = 1

zi ∈ {0, 1}, i = 1, . . . , t.

Proposition 1.3. The above model is correct.

Proof. Let x̂ ∈ P j . We show that there exists (x1, . . . , xt, z) such that the
above model is satisfied. Set zi := 0 ∀i 6= j, xj := x̂, and xi := 0 ∀i 6= j.
Then, the constraints of the model are satisfied.

If x 6∈ P i i = 1, . . . , t, i.e., if x is not in any of the polytopes, then
we show that there are no (x1, . . . , xt, z) such that the above constrains
are satisfied. Assume by contradiction that there exists (x1, . . . , xt, z) that
satisfies the constraints. Then zj = 1 for some j and 0 otherwise. Then,
by Lemma 1.3 the only solution to Aixi ≤ 0 ∀i 6= j is xi = 0. Thus,
we must have that x = xj . However, Ajx ≤ bj is not satisfied which is a
contradiction. Hence, the model is correct.

1.3.3 Piecewise Linear Functions

Definition 1.12. Let −∞ < a1 < a2... < an < ∞. A function of the form
f : [a1, an]→ R1 is a piecewise linear continuous function if

f(x) = mix+ ci x ∈ [ai, ai+1] ∀i ∈ {1, ..., n− 1}

such that miai+1 + ci = mi+1ai+1 + ci+1 ∀i ∈ {1, ..., n− 2}
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Figure 1.2: Example of piecewise linear function.

Observations.

• A function of the form f(x1, ..., xp) =
∑p

j=1 fj(xj) is a piecewise linear
function if fj(xj) is piecewise linear for each j.

• An arbitrary continuous function of one variable can be approximated
by a piecewise linear function, with the quality of the approximation
controlled by the size of the linear segments.

• Note that modelling a piecewise linear function can be viewed as union
of polytopes:⋃

j∈t
conv{(x, y) |x = ai + λ(ai+1 − ai), y = mix+ ci, λ ∈ [0, 1]}.

Next we present a slightly different model.

Suppose we have a piecewise linear function f(x) specified by the points
(ai, bi = f(ai)) for i = 1, ..., 6. Then any a1 ≤ x ≤ a6 can be written as:

x =
6∑
i=1

wiai,
6∑
i=1

wi = 1, w ∈ R6
+.

If ai ≤ x ≤ ai+1 and w is chosen so that x = wiai + wi+1ai+1 and wi +
wi+1 = 1, then we obtain f(x) = wif(ai) + wi+1f(ai+1). In other words:

f(x) =
6∑
i=1

wif(ai),
6∑
i=1

wi = 1, w ∈ R6
+.
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Therefore the requirement is at most two of the w′is are positive, and
more over say wj and wk are positive, then k = j − 1 or k = j + 1. This
condition can be modeled using binary variables yi for i = 1, ..., 5 where
yi = 1 if ai ≤ x ≤ ai+1 and yi = 0 otherwise. The additional constraints
therefore are:

w1 ≤ y1

wi ≤ yi−1 + yi for i = 2, . . . , 5

w6 ≤ y5

5∑
i=1

yi = 1

yi ∈ {0, 1} for i = 1, . . . , 5.

1.3.4 Log(n) Formulation for Sum of Binary Variables Equal
to One

Often in formulation of the MIP problems (such as disjunction and piecewise
linear functions discussed above), we have binary constrains of the form:

n∑
i=1

zi = 1

z ∈ {0, 1}n

These constraints could be modeled with log(n) order number of binary
variables and the constraints as shown below.∑

j|j 6=i

zj ≤
∑

k|k∈supp(B(i))

(1− wk) +
∑

k|k 6∈supp(B(i))

wk ∀i = {1, ..., n}(∗)

n∑
i=1

zi = 1

w ∈ {0, 1}dlog2(n+1)+1e

z ∈ Rn+

where supp(B(i)) represents the positions of 1 in the binary number of i.
For example, supp(B(9)) is {1, 4} since binary number of 9 is 1001, and
the positions of ‘1’ are at 1 and 4. Note that the zi’s are not binary, and
therefore, we have reduced the number of binary variables.
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In this formulation, the wk variables determine a single number between
1 and n, say t. Then, the (∗) constraint for i = t will set all the zi’s other
than zt to 0. Since we have the constraint

∑n
i=1 zi = 1, then zt becomes 1.

Note that, zi will not be forced to be set to 0 on the other (∗) constraints
since at each of those constraints at least one of the sums on the RHS of the
equation will be nonzero.

1.4 Traveling Salesman Problem

In this problem, we assume n cities and dij is the distance for travel from i
and j. Let

xij =

{
1 if salesman travels from i to j

0 otherwise
for all i, j ∈ [n], i 6= j.

First Formulation. The problem is formulated as follows.

min
∑

i,j dijxij (1.8)

st.
∑

i xij = 1 ∀j = {1, ..., n}(∗) (1.9)∑
j xij = 1 ∀i = {1, ..., n}(∗∗) (1.10)∑

i∈U,j∈V \U xij ≥ 1 ∀ U ⊆ V such that 2 ≤ |U | ≤ n− 1(∗ ∗ ∗)
xij ∈ {0, 1} (1.11)

Second Formulation. Constraint (***) in this formulation prevents sub-
tours. These constrains could alternatively be modeled as follows. Define
ui i = 2, ..., n and replace the (***) constraints with:

ui − uj + nxij ≤ n− 1 ∀i, j ∈ {2, ..., n} ⊕

as an alternative formulation.
In order to verify the alternative formulation, see that if a binary vector x

that does not represent a tour while satisfying (*) and (**), then x represents
at least two subtours, one of which does not contain node 1. By summing
⊕ over the arc set of some subtour that does not contain node 1, we obtain∑

ij∈A′
xij ≤ |A

′ |(1− 1

n
)

Therefore, ⊕ excludes all subtours that do not contain node 1 and as a
result, excludes all solutions that contain subtours.
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On the other hand, no tours are excluded by ⊕ since for any tour there
exists a corresponding u satisfying the constraint. In particular, set ui = k,
where k represents the position of node i in the corresponding tour. If
xij = 0, then ui − uj + nxij ≤ n − 2 holds and if xij = 1, ui = k and
uj = k + 1 for some k, then ui − uj + nxij ≤ n − 1 is satisfied. Therefore,
the alternative formulation is correct.

Third Formulation. To enforce connectivity, we introduce a new variable
and corresponding constraints. Assume that we inject n− 1 units of goods
into node 1 and take out 1 unit of goods at the following nodes 2, . . . , n, the
system should be well balanced and connected.
New variable: (flow variable)

fij = flow along the edge (i, j) (1.12)

New constraint:

fij ≤ (n− 1)xij∀i, j ∈ [n] (1.13)

∑
j:j 6=1

fj1 + n− 1 =
∑
k:k 6=1

f1k (1.14)

∑
j:j 6=i

fji −
∑
k:k 6=i

fik = 1, ∀i ∈ {2, . . . , n} (1.15)

fij ≥ 0, ∀(i, j) ∈ E (1.16)

Proposition 1.4. The formulation given by (1.8), (1.9), (1.10), (1.11),
(1.13), (1.14), (1.15), (1.16) is a correct formulation of TSP.

Proof. ⇐ First, we prove that there is no subtour in a solution that satisfies
the constraints of the model. Assume by contradiction that (x̂, f̂) satisfies
the constraints but contains a subtour. Thus there exists a subtour that does
not include the node 1. Let this subtour be (i1, i2, . . . , ik). Add the con-
straints (1.15) for nodes in this sub tour. We obtain 0 = k, a contradiction.
Therefore, a feasible solution of the model contains no subtour.
⇒ Second, we show that given a tour, there always exist values for the

flow variable such that the constraints of the model are satisfied. This can
be easily verified as follows: Let the tour be 1, i1, i2, . . . , in−1, 1. Then set
f1,i1 = n − 1, fi1,i2 = n − 2, . . . , fik,ik+1

= n − k + 1, . . . , fin−2,in−1 = 1 and
fij = 0 otherwise. It is easily verified that with these values of the flow
variables, the constraints (1.8), (1.9), (1.10), (1.13), (1.14), (1.15), (1.16)
are satisfied. Therefore, a tour is always feasible for the system.
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Figure 1.3: TSP: flow variable modelling

1.5 Lot-Sizing

In this problem, at each period a demand needs to be met (the demand is
known in advance). At each period, the manufacturer decides how much
to produce, and there is a fixed cost if production occurs at a period. A
holding cost is also incurred for inventory that is kept for the next periods.
The problem is to satisfy the demand while minimizing costs which include
production costs at each period, fixed cost of production at each period, and
inventory cost between the periods. The following are the model parameters:

• Time index: 1, . . . , n

• Demand: {d1, . . . , dn}

• Cost per unit of production at each period: {c1, . . . , cn}

• Cost per unit of inventory storage: {h1, . . . , hn}

• Fixed cost in each time period if production is positive: {f1, . . . , fn}

The variables of the model include:

• xi: quantity produced at period i

• si: quantity stored from period i to period i+ 1

• yi: binary variable equal to 1 if xi is positive and 0 otherwise.
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Figure 1.4: Lot-sizing model variables.

The optimization model for lot-sizing problem can be written as:

min
n∑
i=1

fiyi +
n∑
i=1

cixi +
n−1∑
i=1

hisi

s.t. x1 = s1 + d1

si−1 + xi−1 = si + di for i = 2, . . . , n− 1(∗)
sn−1 + xn = dn

xi ≤ (

n∑
i=1

di)yi for i = 1, . . . , n(∗∗)

yi ∈ {0, 1} for i = 1, ..., n

(*) corresponds to the flow conservation constraints and (**) to the fixed
charge constraints.

1.6 Relaxation

As we shall see, it is possible to construct multiple formulations. How do
we compare these formulations? One approach is to understand the notion
of relaxation.

A feasible solution to a maximization problem (resp. minimization prob-
lem) yields a lower (resp. upper) bound on the optimal objective function
value. We now present a general technique to produce bounds in the other
direction on the optimal objective value. These bounds are usually called
as dual bounds.
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Let P be the optimization problem

z∗ := sup f(x)

x ∈ S

And let R be the optimization problem

w∗ := sup g(x)

x ∈ S̃

Definition 1.13. The optimization problem R is called the relaxation of the
optimization problem P if

• S ⊆ S̃

• ∀x ∈ S, f(x) ≤ g(x).

Proposition 1.5. Let R be a relaxation of P , where R,P, z∗, w∗ are defined
as above, then

w∗ ≥ z∗

Proof. If S = ∅, then we have by convention supx∈Sf(x) = −∞. Thus,
there is nothing to prove in this case, so we assume S 6= ∅. Let ε > 0. We
need to show that w∗ ≥ z∗ − ε. By definition of z∗, there exists xε ∈ S
such that f(xε) ≥ z∗ − ε. By definition of R, we have that g(xε) ≥ f(xε) or
equivalently g(xε) ≥ z∗ − ε. Finally, since S ⊆ S̃, we have that xε ∈ S̃ and
therefore we obtain that w∗ ≥ z∗ − ε.

Thus relaxations is a fundamental technique to judge the quality of
a given feasible solution: For example, if we are solving a maximization
problem and the objective function value is 10. On the other hand sup-
pose we are able to construct a relaxation whose objective function value
is 12. Then we know that our feasible is “pretty decent”, i.e. it is within
12−10

12 × 100 ≡ 16.67% of optimal solution.
It is clear that many types of relaxations may be used. Ideally, a relax-

ation should be computational tractable and also provide good dual bounds.
In most IP solvers, the so-called linear programming relaxation is used. We
present the formal definition next.

Definition 1.14. Given the mixed integer program

max cTx

Ax ≤ b
x ∈ Zn1 × Rn2
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we call the linear program

max cTx

Ax ≤ b
x ∈ Rn1 × Rn2

as its linear programming relaxation (LPR).

Comparing Formulations Often the same MIP feasible set may be mod-
eled using different choice of variables and optionally with the addition of
some extra variables. As discussed before, one theoretical way to compare
quality of two formulations is to compare their linear programming relax-
ations. Suppose we have two models for the same MIP set: Model 1 and
Model 2. We say that Model 1 is better than Model 2, if for all objective
functions, the LPR of Model 1 gives better bounds that LPR of Model 2.
This happens when the feasible region of LPR of Model 1 is contained in
the LPR of Model 2. Model 1 is better than Model 2 implies that LPR of
Model 1 gives a better dual bound than the LPR of Model 2.

1.7 Facility Location Problem

Let demand be D := {1, . . . , n}. Potential facilities := {1, . . . ,m}. Define:

xj =

{
1 if facility j is opened

0 otherwise
for all j ∈ [m].

Let yij = percentage of demand of i satisfied by facility j, for i ∈ [n], j ∈ [m].

We consider two possible formulations of this problem.
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First formulation.

min
m∑
j=1

cjxj +
∑
i,j

hijyij

st.

m∑
j=1

yij = 1 ∀i ∈ [n]

yij ≤ xj ∀i ∈ [m], j ∈ [n](∗)
xj ∈ {0, 1} ∀j ∈ [m]

yij ≥ 0 ∀i ∈ [n], j ∈ [m]

Second formulation.

min
m∑
j=1

cjxj +
∑
i,j

hijyij

st.

m∑
j=1

yij = 1 ∀i ∈ [n]

n∑
i=1

yij ≤ nxj ∀j ∈ [m](∗∗)

xj ∈ {0, 1} ∀j ∈ [m]

yij ≥ 0 ∀i ∈ [n], j ∈ [m]

The LPR of the first formulation is smaller than the LPR of the second
formulation. The underlying reason is that the constraints of type (**)
is the summation of constraints of type (*) over i = 1, ..., n and that the
summation of constraints generate a bigger feasible domain. Therefore, the
first formulation is better even though it has more constraints.

Moreover, the containment of the LPRs could be strict as illustrated by
the following example: Take n = 2 and m = 3, i.e. two demand nodes and
3 facilities. One can easily check that the solution:
y11 = 1/2, y12 = 1/2, y13 = 0, y21 = 0, y22 = 1/2, y23 = 1/2, x1 = 1/4,
x2 = 1/2, x3 = 1/4, satisfies the LPR of second formulation but not the
first.

1.8 Suggested exercises

1. (Importance of rational data) Problem 1, Page 22, Textbook.
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2. (Wolsey) uppose that you are interested in choosing a set of invest-
ments {1, . . . , 7}. Assume that they have a total cost of $5, $7, $6,
$3, $9, $12, $5. Assume there is a budget of $30. Also assume that
the eventual expected profit out of each investment is $1, $3, $2, $4,
$1, $5, $4. Write a IP formulation for maximizing profit. Now add
constraints to model the following:

• You must choose at least one of them.

• Investment 1 cannot be chosen if investment 3 is chosen.

• Investment 4 can be chosen only if investment 2 is also chosen.

• You must choose either both investments 1 and 5 or neither.

• You must choose either at least one of the investments 1,2,3 or
at least two investment from 2,4,5,6.

3. A machine tool plant owns four different machines on which it can
process jobs. If a machine is used at all, then a setup time is needed.
A job cannot be divided between machines, that is each job must be
processed by exactly one machine. (Note however that one machine
can process more than one job). The relevant times in minutes are
given in the following table.

Job 1 Job 2 Job 3 Job 4 Machine Setup

Machine 1 42 70 930 710 10

Machine 2 340 43 120 7 20

Machine 3 560 32 40 9 60

Machine 4 71 760 5 80 85

(a) The company’s goal is to minimize the sum of the setup and
machine operation times needed to complete all jobs. Formulate
this problem as an integer linear program.

(b) Assume that we want to impose that no more than two jobs can
be assigned for any given machine. What constraints should be
added to your model to represent this new restriction? (Just
write constraint(s) for this part.)

(c) Assume that we want to impose the restriction that if machine
1 is used then machine 3 is used. What constraint should be
added to your model to represent this new restriction? (Just
write constraint(s) for this part.)
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(d) Assume that we want to impose the restriction that either ma-
chine 2 or machine 4 is used. What constraint should be added
to your model to represent this new restriction? (Just write con-
straint(s) for this part.)

(e) Assume that we want to impose the restriction that: If machine 1
and machine 3 are both set up, then job 1 should not be assigned
to machine 3. (Just write constraint(s) for this part.)

4. To graduate from ABC University with a major in OR, a student
must complete at least two math courses, at least two OR courses,
and atleast two computer courses. Some courses can be used to fulfill
more than one requirement.

(a) Calculus can fulfill the math requirement;

(b) Optimization, math and OR requirements;

(c) Data structures, computer and math requirements;

(d) Computer simulation, OR and computer requirement;

(e) Introduction to computer programming, computer requirement;

(f) Forecasting, OR and math requirement; and

(g) Business Statistics, OR requirement.

Some courses are pre requisites for others:

(a) Calculus is a prerequisite for Business Statistics.

(b) Introduction to computer programming is a prerequisite for Com-
puter simulation and Data structures

(c) Business Statistics is a prerequisite for Forecasting.

Formulate an integer program to minimize the number of courses
needed to satisfy the major requirements.

5. Show how to model the following situations. You may create integer
variables when necessary. You may assume that both x1 and x2 are
between 0 and 10. If you use Big-M values be sure to clearly state
what the value of M is and how you obtain it.

(a) |2x1 − 5x2| ≥ 6 (Hint: Think of this as a yes/no constraint.)

(b) | − x1 + 3x2| ≤ 6 (Hint: You won’t need integer variables here.)

(c) The variables x1 and x2, both are restricted to be integers, and
you want to ensure that if x1 < 2, then x2 ≤ 5.
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(d) The variables x1 and x2, both are restricted to be integers, you
want to ensure that either x1 + 5x2 ≤ 10, or 3x1 + 7x2 ≥ 12, or
both constraints are satisfied by x1 and x2.

6. Suppose you manage emergency services for a county which consists of
6 cities. You need to determine in which cities to put fire stations given
that every city must be within 15 minutes of a fire station. You’re given
the following matrix representing the time it takes to travel between

cities:

City 1 City 2 City 3 City 4 City 5 City 6

City 1 0 10 20 30 30 20

City 2 0 25 35 20 10

City 3 0 15 30 25

City 4 0 20 15

City 5 0 30

So this matrix tells us that City 1 can be served by a fire station
in cities 1 and 2. City 2 can be served by a fire station in cities 1,2
and 6. You also assume that

• fire stations don’t have a capacity, and

• you can only build fire stations in cities - i.e. you can’t build one
in between two cities.

Because of your limited budget you want to build as few fire stations
as possible while still being able to serve each city within 15 minute
time. Formulate this problem as Integer Program.

7. (Logical Operators) Let x1, x2, . . . , xn be n binary variables and let
z be some other binary variable.

• Formulate the logical operator or using integer linear program,
i.e., write linear constraints so that (1) z takes the value of 1 if
at least one of the xi’s takes the value of 1, (2) if all the xi’s take
the value of zero, then z takes a value of 0.

• Formulate the logical operator or using integer linear program,
i.e., write linear constraints so that (1) z takes the value of 1 if
at least one of the xi’s takes the value of 1, (2) if all the xi’s take
the value of zero, then z takes a value of 0.

8. Let x and y be binary variables. Remember:
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• We say ‘z = x or y’ if z is 0 whenever both x and y are 0 and z
is 1 otherwise.

• We say ‘z = x and y’ if z is 1 whenever both x and y are 1 and
z is 0 otherwise.

• We say ‘z = not x’ if z is 1 when x = 0 and z is 0 when x = 1.

Let u, v, w be binary variables. Model

(u and not(v)) or w

using linear constraints. You may use new binary variables. (No need
to give any objective function.)

9. (Warehousing Problem). Consider the following problem: There are
m clients {1, . . . ,m}. There are n potential locations for opening ware-
houses {1, . . . , n}. Up to p warehouses can be opened. The distance
between the ith client and jth warehouse location is dij . Each client
must be served by exactly one warehouse. Formulate a integer linear
program to minimize the largest distance between a client and the
warehouse serving it. Suppose now that

• Each client need not be served. However, if a client is served,
then it must be served by exactly one warehouse.

• The revenue generated by serving client i is pi.

• Cost of opening warehouse j is cj .

• If the distance between a client and a warehouse serving it is
strictly greater than r, then an additional cost t is incurred.

• Formulate a integer linear program to decide which warehouse
to open and which clients to be served so as to maximize the
revenue.

10. (Dinner Host) You are asked to determine the seating arrangement of
8 diners: 4 girls (A, B, C, D) and 4 boys (E, F, G, H) on a circular table.
The following conditions must be satisfied.

• No boy must be seated next to a boy.

• A and E should not be seated next to each other.

• C and H should be seated next to each other.

• If A and F are seated next to each other, then D and F must be
seated next to each other.
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Formulate a integer linear program to determine if a feasible seating
arrangement exists.

11. (Pizza Delivery)

• A pizza shop has to deliver pizza to n customers {1, ..., n}.
• There is one pizza delivery car to deliver pizza to the customers.

• tij is the time it takes to travel from customer i to customer j.
t0i is the time it takes to travel from pizza shop to customer i.
Similarly ti0 is the time it takes to travel from customer i to pizza
shop.

• Since the city has a number of one way streets and the delivery
is happening at peak traffic period, tij is not necessarily equal to
tji (and the same for ti0 and t0i)

• The pizza delivery car starts at the pizza shop and visits one cus-
tomer after another (each customer visited exactly once). After
visiting each customer it returns back to the pizza shop.

(a) The Pizza store manager would like to have the Pizza delivered
hot. Therefore, formulate a integer linear program to determine
path for the delivery car so that- each customer is visited exactly
once and the last customer receiving pizza, receives it as soon as
possible.

(b) The Pizza delivery person would like to finish the job as soon
as possible which involves returning the car to the store after
delivery of pizza. Therefore, formulate a integer linear program
to determine path for the delivery car so that the delivery person
visits each customer exactly once and returns to the pizza shop at
the earliest.

12. Model the following problem minimizing the total cost. The model
should be a mixed integer linear problem (i.e. all the constraints should
be linear and some or all of the variables are allowed to be integer.)

• A company knows its demand for the next 6 months. Let i =
1, ..., 6 represent months. The demand is di for the ith month
where i ∈ {1, ..., 6}.
• All demands must be met. In each month, demand is met by using

a combination of either production in that month or inventory
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stored from previous months (or both). Therefore, in each month
the company must decide whether to produce or not to produce.

• It production occurs in period i, then at least l units must be pro-
duced. (l is a fixed positive number that the production engineers
have pre-specified.)

• The per unit cost of storing inventory from month i to month
i+ 1 is hi.

• The per unit cost of production in month i is ci.

• There is a fixed cost fi of starting up the machinery in month i.
The fixed cost applies in month i only if there is non-zero produc-
tion in month i and there is no production in month i− 1. There
is no fixed cost for month 1. For example, if the production in
months 1, 2, 3, 4, 5, and 6 are 10, 20, 0, 5, 13, and 0 respectively,
then fixed cost applies only for month 4.

Clearly define each variable.

13. A power plant has four boilers. If a given boiler is operated, it can be
used to produce a quantity of steam (in tons) between the minimum
and maximum given in Table 1.1. The cost of producing a ton of steam
on each boiler is also given, as well as the fixed cost of operating each
boiler. Steam from the boilers is used to produce power on three
turbines. If operated, each turbine can process an amount of steam
(in tons) between the minimum and maximum given in table 1.2. The
cost of processing a ton of steam and the power produced by each
turbine is also given. The power plant must produce at least 9,000
Kwh of power.

Boiler # Min. Max. Cost per ton ($) Fixed cost ($)

1 400 900 9 160
2 500 700 7 200
3 300 600 8 190
4 240 800 6 250

Table 1.1: Data for each of the boilers

• Formulate a linear IP that can be used to minimize the cost while
satisfying all constraints. Clearly specify what are the decision
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Turbine # Min. Max. Kwh per ton of steam Processing Cost per Ton ($)

1 100 700 7 9
2 400 800 3 4
3 300 600 6 6

Table 1.2: Data for each of the turbines

variables (and what they mean), as well as the objective function
and constraints.

• Write linear constraints that correctly model the following addi-
tional restriction: If both boilers 1 and 2 operate, then boilers 3
and 4 must not operate. (you may add additional variables if you
need to.)

• Suppose that if we operate both boilers 3 and 4, then instead
of the fixed cost being 440, it drops to 340 since they are able
to share some resources. How would you modify your linear IP
formulation to reflect this cost change? (you may add additional
variables if you need to.)

14. Jack and Jill love to watch DVDs and, as a couple, have vowed to
always watch their DVDs together as a form of spending time with each
other. They have subscribed for a 1 month free trial and estimated
that they will watch 20 DVDs by the end of the free trial. They have
pre-selected 100 DVDs that they would like to watch and now want to
decide which 20 out of these 100 to watch during the free trial month.
These 100 DVDs are divided as follows: DVDs 1-20 are action movies,
DVDs 21-40 are romantic comedies, DVDs 41-60 are TV series, DVDs
61-80 are documentaries and DVDs 81-100 are science fiction.

They associated an estimated common satisfaction index si to each
DVD and wish to maximize their estimated common satisfaction dur-
ing this month. They also established the following constraints so that
each of them will not be too unhappy: They must choose at least 3
action movies and at least 3 romantic comedies, but not more than 5
science fiction and no more than 2 documentaries.

(assume that they will be able to obtain all movies they request)

a) Write an Integer programming formulation that Jack and Jill can
use to solve this problem of maximizing their estimated common
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satisfaction. Clearly indicate your decision variables and what
they mean.

b) Write one or more linear constraints to express the following ad-
ditional conditions: (you may add decision variables if necessary,
as long as you make it clear what they mean. Also, if you use a
Big-M constant, explicitly state its value and how you got to it)

i. Since DVDs 11, 12 and 13 are part of a series, either they
get all of them, or they get none of them.

ii. DVDs 41–50 are respectively seasons 1–10 of Friends, so they
have decided that if they watch one season of Friends, they
must watch all seasons before it. For example, if they watch
season 6, they must also watch seasons 1–5.

iii. If they watch at least 2 DVDs out of 24, 34 and 77, then they
must not watch more than one DVD out of 27, 35 and 79.

c) Jack and Jill realized that their satisfaction model for DVDs 84
and 85 is slightly different. If they watch exactly one DVD among
84 and 85, then the satisfaction index is t. Else it is zero. How
would you model this fact using only linear constraints and linear
objective function? (you may add auxiliary variables)

15. You have been assigned to arrange the songs on the cassette version
of Madonna’s latest album. A cassette tape has two sides (1 and 2).
The songs on each side of the cassette must total between 14 and 16
minutes in length. The length and type of each song are given in the
table below:
Song Type Length (minutes)

1 Ballad 4

2 Hit 5

3 Ballad 3

4 Hit 2

5 Ballad 4

6 Ballad 3

7 5

8 Ballad and Hit 4
The assignment of songs to the tape must satisfy the following condi-
tions:

(a) Each side must have exactly two ballads.

(b) Side 1 must have at least three hit songs.
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(c) Either song 5 or song 6 must be on side 1.

(d) If songs 2 and 4 are on side 1, then song 5 must be on side 2.

Explain how you could use an integer programming formulation to
determine whether there is an arrangement of songs satisfying these
restrictions.

16. (a) There are eight machines types of A, B, C, D, E, F , G, H.

(b) Machines A, B, C, D are used for drilling and machines E, F ,
G, H are used for finishing.

(c) Each drilling machine must be coupled to exactly one finishing
machine.

(d) On the other hand each finishing machine can be coupled to 2 or
less drilling machines (and can also be zero).

(e) If drilling machine i is exclusively coupled to finishing machine
k, then the cost of cik.

(f) If on the other hand the drilling machine i and j are coupled to
machine k, then the cost of cijk.

Write a formulation that assigns each drilling machine to at least one
finishing machine at minimum cost.

17. (Textbook) A company has 10 employees, each of whom can work on at
most 2 team projects. Six projects are under consideration (although
the company may decide to not work on each project). Each project
requires 4 out of the 10 workers. The required employees for each
project and revenue generated from each project is presented below.
Each worker who is used on any project must be paid the retainer

Table 1.3: Required number of workers and revenue
Project Required Employee Revenue

1 1,4,5 8 10000

2 2,3,7, 10 15000

3 1, 6, 8, 9 6000

4 2,3,5, 10 8000

5 1,6,7, 9 12000

6 2,4,8,10 9000

shown below. Finally, each worker on a project is paid the project fee
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1 2 3 4 5 6 7 8 9 10

Retainer 800 500 600 700 800 600 400 500 400 500

1 2 3 4 5 6 7

Fee 250 300 250 300 175 180 300

shown below.

18. At a machine tool plant, five jobs must be completed each day. There
are 5 machines. The time for doing job i in machine j is tij . If a
machine is used at all, there is a setup time of sj .

• (Textbook) The company’s goal is to minimize the sum of the
setup and machine operation times needed to complete all jobs.
Formulate this as an IP.

• Different machines will run for different amounts of time depend-
ing on the setup time and the jobs there are completing. The
company’s goal is to minimize the maximum time over the dif-
ferent machines. Formulate this as an IP.

19. The Transylvania Olympic Gymnastics Team consists of 6 people.
Transylvania must choose 3 people to enter both the balance beam
and oor excercises events. They must also enter a total of 4 people in
each event. The score that gymnast j can attain in balancing is bj and
in floor excercises is fj . Formulate an IP to maximize the total score
attained by the Transylvania gymnasts.

20. Consider the following variant of lot-sizing problem.

• The planning horizon is 6 months. Let i = 1, ..., 6 represent
months.

• The per unit cost of production in month i is ci.

• The per unit cost of storing inventory from month i to month
i+ 1 is hi.

• There is a fixed cost fi of starting up the machinery in month i,
i.e., if amount of production in month i is greater than zero then
fixed cost is fi and if it is zero then the fixed cost if 0.
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• The company knows its demand for the next 6 months. The
demand is di for the ith month.

• There is flexibility in meeting the demand. In each month one of
the following three choices must be selected:

(a) Demand di is met in month i.

(b) Demand di is met in next month, i.e. month i + 1. Essen-
tially this choice allows the company to delay the delivery of
demand by 1 month. This option is not available for the last
month. Selecting this choice involves paying a penalty pi.

(c) Demand di is never met. Selecting this choice involves paying
a penalty qi.

• It must be ensured that at least demands of three months are
met (either at correct time or with a delay of 1 month).

Formulate an IP to minimize cost.

Example: Following is an example of a valid plan for meeting demands:

(a) Demand delivered in month 1: 0 (Demand d1 delayed by one
month)

(b) Demand delivered in month 2: d1

(c) Demand delivered in month 3: d2 (Demand d2 delayed by one
month, Demand d3 never met)

(d) Demand delivered in month 4: 0 (Demand d4 is delayed by one
month)

(e) Demand delivered in month 5: d4 + d5

(f) Demand delivered in month 6: 0 (Demand d6 never met)

Other than the production cost, fixed costs, inventory costs, the penalty
cost in this case is: p1 + p2 + q3 + p4 + q6.

21. (Xpress Manual) Mr. Miller is in charge of establishing the weekly
timetable for two sections of the last year in a college. The two sections
have the same teachers, except for mathematics and sport. In the
college all lessons have a duration of two hours. Furthermore, all
students of the same section attend exactly the same courses. From
Monday to Friday, the slots for courses are the following: 8 : 00 - 10
: 00, 10 : 15 - 12 : 15, 14 : 00 - 16 : 00, and 16 : 15 - 18 : 15. The
following table lists the number of two-hour lessons that every teacher
has to teach the students of the two sections per week.
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Teacher Subject Lessons/week for section 1 Lessons/week for section 2

Ms Cheese English 1 1

Mr Insulin Biology 3 3

Ms map Geography 2 2

Mr Efofecks Mathematics 0 4

Ms Derivate Mathematics 4 0

Mr Electron Physics 4 3

Ms Wise Philosophy 1 1

Mr Muscle Sport 1 0

Ms Biceps Sport 0 1

The sport lessons have to take place on Thursday afternoon from 14:00
to 16:00. Furthermore, the first time slot on Monday morning is re-
served for supervised homework. Mr Efofecks is absent every Monday
morning because he teaches some courses at another college. Mr In-
sulin does not work on Wednesday. And finally, to prevent students
from getting bored, every section may only have one two-hour lesson
per subject on a single day. Write a mathematical program that allows
Mr Miller to determine the weekly timetable for the two sections.

22. A hospital is scheduling nurses for aiding in surgery. 10 surgeries need
to be performed. Each surgery requires exactly 2 nurses. There are
25 available nurses. We have the following additional constraints.

(a) A nurse can aid in a surgery only if the nurse is qualified to do
so. The following data is available: dij = 1 if nurse i is qualified
to aid in surgery j and dij = 0 if nurse i is not qualified to aid in
surgery j (dij provided for all i = 1, ....25 and for all j = 1, ..., 10).

(b) Nurse 1, Nurse 2, ..., Nurse 15 are senior nurses. Nurese 16, ...,
Nurse 25 are junior nurses. Each surgery must have at least 1
senior qualified nurse.

(c) Nurse 1 and Nurse 20 do not work well together. They must not
be scheduled to the same surgery.

(d) Each nurse can aid in at most 2 surgeries.

(e) At least 5 junior nurses must be aiding surgeries.

Formulate an integer program to find a feasible schedule.

23. Variables x and y must belong to the set drawn in Figure.
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Figure 1.5:

(a) Is the allowable set of x and y convex?

(b) Write down a mixed integer programming model (by using ad-
ditional variables), so that x and y belong only to the allowable
set.

24. There are n supply stations and m demand centers. Let i = 1, ..., n
represent the supply stations and let j = 1, ...,m be the demand cen-
ters. Each supply station has a capacity of at most si tons of products
and each demand center requires at least dj tons of products. (You can
model the amount of product as a continuous variable.) The products
are shipped by using trucks. Each truck can carry at most b tons of
products. The cost of sending a truck from supply station i to de-
mand center j is cij , regardless of the amount of product carried by
the truck. Note that (1) Each truck travels from exactly one supply
station to exactly one demand node. (2) Any number of trucks can be
sent from supply station i to demand center j. Write a mixed integer
linear program to minimize the total cost.

25. A company sells seven types of boxes, ranging in volume from 17 to 33
cubic feet. The demand and size of each box type are given in Table
1.4. The cost (in dollars) of producing each box is equal to the box’s
volume. Moreover, a fixed cost of $1000 is incurred to produce any of
a particular box type. [For example: If 50 boxes of 26 cubic feet are
manufactured, then the total cost = 1000 + 26*50]. If the company
desires, a demand for a box may be satisfied by a box of larger size.
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1 2 3 4 5 6 7

Size 33 30 26 24 19 18 17

Demand 400 300 500 700 200 400 200

Table 1.4: Size and Demand of the Boxes.

(a) Formulate an integer linear program to minimize the cost of meet-
ing the demand of the boxes.

(b) Suppose the fixed cost structure is a bit different for boxes of
size 19 and 17 cubic feet: If both box type 17 and 19 are man-
ufactured, then the fixed cost is $1500 instead of $2000. If only
one type among these two is produced, then the fixed cost re-
mains $1000. Write the updated and additional constraints (and
variables) needed to model this.

(c) Suppose that the demands are flexible: The company must man-
ufacture boxes to safisfy the demand of at least five out of the
seven box types only. Write the updated and additional con-
straints (and variables) needed to model this.

26. A large-scale grocery retailer must purchase onions for two of their
stores. Onions can be purchased from three farms. Here are the rele-
vant details:

(a) Store 1 requires at least 1000 units and store 2 requires at least
2000 units of onions.

(b) Farms 1 sells at $3 per unit and Farm 2 sells at $4 per unit.

(c) Farm 3 sells onions in the following fashion: The first 300 units
sells for $3 per unit, the next 400 units sells at a discounted rate
of $2.5 per unit. However, the price per unit increases after the
first 700 units to $5, since farm believes that there may be more
demand than supply. (Example: If 800 units are purchased from
Farm 3, then the price charged by Farm 3 is 3×300+2.5×400+
5× 100.)

(d) The cost of transportation per unit from the farms to the stores
are given below:

Farm 1 Farm 2 Farm 3

Store 1 $ 1 $ 1 $ 2

Store 2 $ 2 $ 1 $ 1
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Write a mixed integer programs to minimize total cost for the retailer.

27. The problem of finding a factorizing of an integer number N , i.e.,
finding integers x and y such that N = x× y with x ≥ 2 and y ≥ 2 is
a very important problem. Formulate this problem as a linear integer
program using no more than O(log2(N)) variables.

28. Sudoku.
I am sure many of you have seen “sudoku”. In a sudoku puzzle, there
is a 9×9 grid. Each square in the 9×9 grid must contain a digit from
1 through 9, with the following restrictions:

(a) Each row must contain exactly one of each digit (1-9)

(b) Each column must contain exactly one of each digit (1-9)

(c) Each of the nine 3×3 boxes (shown by the bold lines below) must
contain exactly one of each digit (1-9).

Some squares are already filled in (See Figure 1 on next page); your
job is to fill in each of the others so that all three of the above rules
are satisfied. Develop an IP model to solve sudoku.

Figure 1.6: sudoku

29. (J. P.-P. Richard) Paperboys.
Two paperboys must deliver newspaper in Manhattan. They pick the
papers at 6:00 am and have to deliver them to n customers as soon as
possible. It is well-known that the streets in Manhattan form a rect-
angular grid so we can assume that the distance between two points
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(x1, y1) and (x2, y2) is |x1 − x2| + |y1 − y2|. The coordinates of the
customers are:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x -60 40 -20 10 -30 50 -50 10 -40 20 -5 40 -50 20 15

y 40 50 -40 60 20 -30 -10 -40 10 -30 5 20 30 40 -15

The depot is located at (0, 0). Assume that the paper boys cover
100 distance units per hour. Write a IP model to minimize the time
for when the latest of the two paperboys returns back to the depot.

30. (Wolsey) Removing a point.
Consider the polytope P given by:

2x1 + 3x2 ≤ 100

x1 ≥ 0

x2 ≥ 0.

Notice that the point (5, 10) is a feasible point for P . Write an integer
programming formulation whose feasible set is exactly the the set of
integer points in P except (5, 10). (No need to give any objective
function.)

31. Genetic material from different species is often “aligned” by biologists
to understand the common features between them. Consider the fol-
lowing concrete (mathematical) version of this problem.

Two strings of characters from the set C := {1, 2, 3, 4} of lengths n1

and n2 are given as input. We are allowed to insert gaps in the strings
so that the two strings become of equal length n. (n ≥ max{n1, n2}).
Note that the strings cannot be otherwise changed (for example, the
order in which the characters appear in the original strings must be
the same order in which the characters appear in the new strings if
the gaps are removed). This pair of new strings of equal lengths is
called an alignment. Let’s represent the gaps with the character “0”
and let C̄ := {0, 1, 2, 3, 4}. We represent the resulting first sequence
(with gaps) as a1, a2, a3, ..., an and the resulting second sequence
(with gaps) as b1, b2, b3, ..., bn, i.e. aj , bj ∈ C̄ ∀j ∈ {1, . . . , n}.

Example: String 1: 1 2 3 1 2. String 2: 2 1 4 4. We have n1 = 5 and
n2 = 4. We may insert gaps in the two strings to obtain an alignment
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with n = 7 as follows:

1 0 0 2 3 1 2
0 2 1 0 4 4 0.

(1.17)

Note that for a fixed value of n, many alignments are possible based
on where the gaps are inserted.

We want the best possible alignment. In order to evaluate the qual-
ity of an alignment, we compare the characters at the same position.
More formally, we are given a cost function f : C̄ × C̄ → Z+ and the
cost of an alignment is

n∑
j=1

f(aj , bj).

Example (contd.): Suppose f is the matrix

0 1 2 3 4

0 100 20 30 40 50

1 20 0 50 40 10

2 30 50 0 20 70

3 40 40 20 0 30

4 50 10 70 30 0

Then the cost of the alignment given in (1.17) is 20 + 30 + 20 + 30 +
30 + 10 + 30 = 170.

Given two sequences and a cost function matrix, write a mixed in-
teger linear formulation to determine the alignment with minimum
cost. (Assume that f(0, 0) is positive and so aj and bj cannot be
simultaneously 0 and consequently n ≤ n1 + n2.)

32. You are given a connected graph G = (V,E), weight w : E → R+ and
special subset of vertices U ⊆ V . The Steiner tree problem is to find a
minimum-weight tree that includes all the vertices in U . Write down
an IP formulation for this problem.

33. *(Alternative formulation) Let A ∈ Zm×n+ be a non-negative integral
matrix and b ∈ Zm+ . Let S := {x ∈ Zn |Ax = b;x ≥ 0}. Show that
there exists c ∈ Zn+ and d ∈ Z such that

S = {x ∈ Zn | cTx = d, x ≥ 0}.
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Hint: Consider aggregating rows with suitable integer multipliers so
that the set of integer feasible solutions does not change.

34. (Comparing formulations) Problem 17, Page 25, Textbook.

35. Write an integer programming formulation for the following problem:
Jobs {1, . . . , n} must be processed on a single machine. Each job is
available for processing after a certain time, called release time. For
each job we are given its release time ri, its processing time pi and
its weight wi. Formulate as an integer linear program the problem of
sequencing the jobs without overlap or interruption so that the sum
of the weighted completion times is minimized.

36. Office design problem: We are given a rectangular room of length along
x-axis L and along y-axis W . We want to place n cubicles inside this
room. You must design the center (cxi , c

y
i ) and the length along x-axis

li and length along y-axis wi of the i-th cubicle. Following constraints
must be satisfied:

• Size of cubicle: The sum of li and wi must be at least ai.

• Aspect ratio of cubicle: min{li/wi, wi/li} ≥ 1/2.

• No two cubicles can overlap.

• All the cubicles must fit inside the rectangular room.

The objective in minimize the sum of the pairwise Manhattan distance
between centers i.e.,

∑
1≤i<j≤n |cxi−cxj |+|c

y
i−c

y
j |. Write a mixed integer

linear model for the above office design problem.

37. Let S := {x ∈ {0, 1}4 | 90x1 + 35x2 + 26x3 + 25x4 ≤ 138}. Show that
S = {x ∈ {0, 1}n | 2x1 +x2 +x3 +x4 ≤ 3} and S = {x ∈ {0, 1}4 | 2x1 +
x2 +x3 +x4 ≤ 3, x1 +x2 +x3 ≤ 2, x1 +x2 +x4 ≤ 2, x1 +x3 +x4 ≤ 2}.
Can you rank these formulations in terms of the tightness of their
linear relaxation. Show any strict inclusion.

38. (Formulation; comparison of formulation) Consider a piecewise lin-
ear function f defined by the following break points: (ai, f(ai)) i ∈
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{1, . . . , N}. Consider the following model:

x = a1 +
N−1∑
i=1

ui (1.18)

f(x) = f(a1) +

N−1∑
i=1

f(ai+1)− f(ai)

ai+1 − ai
ui (1.19)

u1 ≤ a2 − a1 (1.20)

uN−1 ≥ 0 (1.21)

ui ≤ (ai+1 − ai)vi−1 ∀i ∈ {2, . . . , N − 1} (1.22)

ui ≥ (ai+1 − ai)vi ∀i ∈ {1, . . . , N − 2} (1.23)

1 ≥ v1 ≥ v2 ≥ · · · ≥ vN−2 ≥ 0 (1.24)

vi ∈ {0, 1} ∀i ∈ {1, . . . , N − 2} (1.25)

(a) Prove that the above MIP model is also a correct formulation of
piecewise linear problem.

(b) Prove that the MIP model discussed in class is a better model
that the above by comparing the LP relaxation value in the space
of x and f(x).



Chapter 2

Introduction to
Computational Complexity

2.1 Standard encoding

We begin by discussing the binary encoding of rational numbers.

Definition 2.1 (Rational number). A rational number α is a number
that can be written as α = p

q , where p ∈ Z, q ∈ N and gcd(p, q) = 1. We
denote the set of all rational numbers by Q.

Examples of rational numbers are 2, −1
7 , 6

5 , −49. On the other hand, the

numbers
√

2, π and ln 7 are examples of numbers that are not rational (i.e.,
irrational).

Rational numbers are extremely important in Integer Programming The-
ory, as we have seen in home work 1. For now, we use the definition of ratio-
nal numbers to define what we call the encoding size of a rational number,
which essentially quantifies the number of bits required for storing a rational
number in binary representation.

Consider first an integer number p ∈ Z. The encoding size of p (de-
noted by size(p)) is computed as

size(p) = 1 + dlog2(|p|+ 1)e (2.1)

where 1 bit is for storing the sign of p, and dlog2(|p|+ 1)e bits to store |p| in
base 2. Extending this idea, in order to store α = p

q ∈ Q we need to store
the sign of p, and |p| and q in base 2 (recall that q ∈ N and thus we do not

39
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need to store its sign). It follows that

size(α) = size

(
p

q

)
= size(p) + size(q) (2.2)

(2.1)
= 1 + dlog2(|p|+ 1)e+ dlog2(q + 1)e. (2.3)

We can further extend this definition for storing vectors and matrices of
rational entries. For a =

(
a1 a2 · · · an

)
∈ Qn with ai = pi

qi
, pi ∈ Z, qi ∈

N,∀i ∈ [n], we define

size(a) =
n∑
i=1

size(ai) =
n∑
i=1

size

(
pi
qi

)
(2.4)

(2.3)
=

n∑
i=1

(1 + dlog2(|pi|+ 1)e+ dlog2(qi + 1)e)

= n+
n∑
i=1

(dlog2(|pi|+ 1)e+ dlog2(qi + 1)e) . (2.5)

Similarly, for A ∈ Qm×n with Aij =
pij
qij
, pij ∈ Z, qij ∈ N,∀i ∈ [m], ∀j ∈ [n],

we define the encoding size of a rational matrix A as

size(A) =

m∑
i=1

n∑
j=1

size(Aij) =

m∑
i=1

n∑
j=1

size

(
pij
qij

)
(2.6)

=

m∑
i=1

n∑
j=1

size(pij) + size(qij)

=
m∑
i=1

n∑
j=1

(1 + dlog2(|pij |+ 1)e+ dlog2(qij + 1)e)

= mn+
m∑
i=1

n∑
j=1

(dlog2(|pij |+ 1)e+ dlog2(qij + 1)e) . (2.7)

As an example, consider the graph in Figure 2.1. Recall that a graph
G = (V,E) can be represented by its underlying adjacency matrix A ∈
{0, 1}|V×V |, where Aij = 1 if (i, j) ∈ E and Aij = 0 otherwise. In the given
example we can represent the graph by the adjacency matrix

A =

0 1 1
1 0 0
1 0 0
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3

1 2

Figure 2.1: A simple graph

We can conclude that the encoding size of a graph G = (V,E) is in fact
the encoding size of its adjacency matrix.

Lemma 2.1. Let A ∈ Qn×n such that size(A) = θ. Then

size(det(A)) ≤ 2θ

Proof. As A ∈ Qn×n, it is clear that det(A) ∈ Q and therefore we can find
p ∈ Z, q ∈ N such that det(A) = p

q . Similarly, for each (i, j) ∈ [n] × [n] we

can find pij ∈ Z and qij ∈ N such that Aij =
pij
qij

. Note that we want to
prove

size(det(A)) = 1 + dlog2(|p|+ 1)e+ dlog2(q + 1)e ≤ 2θ
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Note that by definition of θ we have

θ
(2.7)
= n2 +

n∑
i=1

n∑
j=1

(dlog2(|pij |+ 1)e+ dlog2(qij + 1)e)

n>1
> 1 +

n∑
i=1

n∑
j=1

(dlog2(|pij |+ 1)e+ dlog2(qij + 1)e)

=⇒ θ − 1 >
n∑
i=1

n∑
j=1

(dlog2(|pij |+ 1)e+ dlog2(qij + 1)e) (2.8)

>
n∑
i=1

n∑
j=1

(log2(|pij |+ 1) + log2 qij)

2(·)
=⇒ 2θ−1 > 2

∑n
i=1

∑n
j=1(log2(|pij |+1)+log2 qij) =

n∏
i=1

n∏
j=1

qij(|pij |+ 1) (2.9)

and therefore

2θ−1 >

n∏
i=1

n∏
j=1

qij (2.10)

Now we prove an auxiliary claim.

Claim 2.1.

q ≤
n∏
i=1

n∏
j=1

qij (2.11)

Proof. Using Leibniz Formula we can write det(A) as

det(A) =
p

q
=
∑
σ∈Sn

sgn(σ)

n∏
i=1

Aσ(i),i =
p̄∏n

i=1

∏n
j=1 qij

(2.12)

where the denominator on the RHS of (2.12) is a common multiple of the
denominators of all the rational entries of A, obtained from all the additions
in Leibniz Formula. Certainly since gcd(p, q) = 1 (by definition of the ra-
tional number det(A)), then q is the least denominator that can be used to
write det(A) as a fraction, following that q ≤

∏n
i=1

∏n
j=1 qij , as desired.
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Combining (2.10) and (2.11) we conclude that

q < 2θ−1. (2.13)

As q ∈ N and θ ∈ N (and therefore 2θ−1 ∈ N), it follows from (2.13) that

q < 2θ−1 =⇒ q + 1 ≤ 2θ−1 =⇒ log2(q + 1) ≤ θ − 1

θ−1∈Z
=⇒ dlog2(q + 1)e ≤ θ − 1. (2.14)

Now note that

det(A) =
p

q
=⇒ |p| = q|det(A)|

(∗)
≤ q

n∏
i=1

√√√√ n∑
j=1

A2
ij = q

n∏
i=1

√√√√ n∑
j=1

(
pij
qij

)2

≤ q
n∏
i=1

√√√√ n∑
j=1

p2
ij

≤ q
n∏
i=1

√√√√ n∏
j=1

(|pij |+ 1)2

≤ q
n∏
i=1

n∏
j=1

(|pij |+ 1)

(2.11)

≤
n∏
i=1

n∏
j=1

qij

n∏
i=1

n∏
j=1

(|pij |+ 1)

=

n∏
i=1

n∏
j=1

qij(|pij |+ 1)

(2.9)
< 2θ−1. (2.15)

where (*) follows from Hadamard’s Inequality. We conclude from (2.15) that

|p| < 2θ−1. (2.16)

As |p| ∈ Z and θ ∈ N (and thus 2θ−1 ∈ N), it follows from (2.16) that

|p| < 2θ−1 =⇒ |p|+ 1 ≤ 2θ−1 =⇒ log2(|p|+ 1) ≤ θ − 1

θ−1∈Z
=⇒ dlog2(|p|+ 1)e ≤ θ − 1

=⇒ 1 + dlog2(|p|+ 1)e ≤ θ. (2.17)
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Lastly, by definition of encoding size of det(A) and by (2.14) and (2.17) we
have

size(det(A)) = 1 + dlog2(|p|+ 1)e+ dlog2(q + 1)e
≤ θ + (θ − 1)

= 2θ − 1

< 2θ

which is the desired result.

For a given matrix A ∈ Qn×n, this result reveals that although the value
of det(A) can be very large, its encoding size is no more than twice the
encoding size of A.

2.2 Problem, instance, algorithm, worst-case run-
ning time

Definition 2.2 (Problem and Instances). A computational problem can
be viewed as an abstract question to be solved. In contrast, an instance of
a problem is a concrete realization of such, which can be used as the input
for a decision problem.

Observation 2.1. In the same line of the previous definition, a particular
input string of a computational problem is referred to as a problem instance,
and should not be confused with the problem itself.

To illustrate the difference between the concepts of problem and instance,
consider the following instance of the decision version of the Traveling Sales-
man Problem (TSP): Is there a route of at most 2000 kilometers that visits
the 15 largest cities of Germany exactly once? The quantitative answer to
this particular problem instance (characterized by the length of the asked
tour, namely 2000 km; and by the cities in question, in this case the 15
largest cities of Germany) is of little use for solving other instances of the
problem, such as asking for a round trip through all sites in Milan whose
total length is at most 10 km and visits every site exactly once. The previous
situations are two instances of the following computational problem: Given
n points, can we find a tour of length at most l such that all the points are
visited exactly once?

Definition 2.3 (Decision problem). A decision problem is a special type
of computational problem whose answer is either yes or no (or equivalently,
either 1 or 0).
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Observation 2.2. A decision problem can be viewed as a formal language,
where the elements of the language are instances whose output is yes, and
the elements not in the language are those instances whose output is no.
The objective is to decide, with the aid of an algorithm, whether a given
input string is a member of the formal language under consideration. If the
algorithm deciding this problem returns the answer yes, the algorithm is said
to accept the input string, otherwise it is said to reject the input.

Optimization problems such as

min cTx (2.18a)

s.t. x ∈ P (2.18b)

can be seen as decision problems. As an example, suppose that for a given
set of cities, the set P is the polyhedron containing all the possible tours that
visit every such city exactly once, and cTx represents the length of tour x.
We may want to determine whether there exists a tour such that its length
is at most a certain amount c0, i.e., if there exists a tour x∗ ∈ P such that
cTx∗ ≤ c0. We now can transform problem (2.18) into a feasibility problem
by modifying it into the optimization problem

min cTx (2.19a)

s.t. x ∈ P (2.19b)

cTx ≤ c0 (2.19c)

We can then use some algorithm (e.g., Binary Search) to solve (2.19). Note
that (2.19) directly solves the decision problem of finding a tour of length
at most c0: if (2.19) admits one solution, then the answer to the decision
problem is “yes”, whereas if (2.19) is not feasible then the answer is “no”.

As we have previously referred to the term “algorithm” multiple times,
we now give a somehow informal yet accepted definition.

Definition 2.4 (Algorithm). An algorithm is a step-by-step procedure for
calculations. It is a method that consists of a finite number of exact, finite
instructions. When applied to a problem of its class, it always finishes in a
finite number of steps and always produces a correct answer.

Observation 2.3. An algorithm is expressed as a finite list of well-defined
instructions for calculating a function. Starting from an initial state and
initial input, the instructions describe a computation that, when executed,
proceeds through a finite number of well-defined successive states, eventually
producing an output and terminating at a final ending state.
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A fair question to be asked is the following: “What makes some problems
computationally hard and others easy?” Surprisingly, although this question
has been intensively researched over the last 45 years, the answer is still to
be found.

As an example, consider the problems of sorting a set of numbers. This
is indeed an easy problem that even small computers can solve very fast for
a set of 1,000,000 numbers. On the other hand, if we consider a schedul-
ing problem with non-overlapping constraints, even a supercomputer may
require centuries to find the best schedule of an instance of only 1,000 ac-
tivities.

In general, the number of steps an algorithm uses on a particular instance
may depend on several parameters (e.g., if the input is a graph, the number
of steps may depend on the number of nodes, the number of edges and the
maximum degree of the graph). For simplicity, we compute the running
time (also called time complexity) of the algorithm purely as a function
of the size1 of the instance and do not consider any other parameter, and
we observe that typically a larger instance requires a larger running time for
being solved2.

Using some notation, if the input size is n, the running time of an algo-
rithm used to solve that instance is expressed as a function of n. To do this,
we assume that certain operations are executed in unit time, and we can
therefore obtain the function f . For instance, if we apply Binary Search
to sort an unsorted list of numbers which has n elements and we assume
that each lookup of an element in the list can be done in unit time, then at
most log2(n+ 1) time units are needed to return the list sorted.

We can express the running time of an algorithm A on a problem class
π and on an instance of size n, as follows:

f(n) = max
ρ∈π,size(ρ)=n

{running time of A on instance ρ}

There is a vast literature on Complexity Theory, and the study of algorithms
can be done by employing many different efficiency measures. We limit our-
selves to the most traditional one, which we define next.

Definition 2.5 (Worst-case time complexity). We define the worst-case
time complexity T (n) as the maximum time taken over all inputs of size n.

1Generally taken to be the size of the input in bits.
2One could also consider the space complexity of an algorithm, namely the size of

the storage location that it uses while executing its instructions
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This definition is motivated by the fact that the time taken on different
inputs of the same size can be different, thus we consider the worst of all
such cases with such size. Other measures include average-case analysis
and best-case analysis.

Because the exact running time of an algorithm often is a complex ex-
pression, it is usually estimated. For doing so we typically perform an
asymptotic analysis, which analyzes the running time of an algorithm
when run on large inputs. The usual way of doing this is by considering
only the highest order term of the expression for the running time of the
algorithm, disregarding both its coefficient and all the lower order terms, as
the highest order term dominates the other terms on large inputs.

Consider for instance the function f(n) = 2n3 +200n2 +4500n+540000.
We note that f has four terms and the highest order term is 2n3. Disre-
garding its coefficient 6 we say that f is asymptotically at most n3. The
asymptotic notation or big-O notation for describing this relationship
is f(n) = O(n3). We formalize this notion in the following definition.

Definition 2.6 (Big-O notation). Let f, g : N → R+. We say that f(n) =
O(g(n)) if ∃c, n0 ∈ N such that for all n ≥ n0,

f(n) ≤ cg(n)

When f(n) = O(g(n)), we say that g(n) is an upper bound for f(n),
or more precisely, that g(n) is an asymptotic upper bound for f(n), to
emphasize that we are suppressing constant factors.

2.3 Theory of NP-completeness

In this section we further study some important concepts on the Theory of
Complexity, which will give us some insights on how difficult a problem may
be to solve.

2.3.1 Introduction

We start with the following definition.

Definition 2.7 (Polynomial-time solvable). A problem π is said to be polynomial-
time solvable whenever there exists an algorithm that solves π and whose
running-time is O(nk), where k > 0 and n is the input size (bits). In words,
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the running time of the algorithm that solves π is asymptotically bounded
above by a polynomial function of the input size. In such case we say that
the algorithm is a polynomial-time algorithm.

Remark 2.1. If π is a polynomial-time solvable problem, we say that π ∈ P,
where P is known as a fundamental complexity class of problems. In partic-
ular, P is the class of all the polynomimal-time solvable problems.

Example 2.1. With the intention of facilitating the understanding of the
concepts defined above, consider the following examples:

• The function f(n) = n2 log(n) is bounded above by the polynomial
function n3.

• Examples of polynomial-time solvable problems are Sorting, Linear
Programming, Totally Unimodular Integer Programs and the Lot-Size
Problem.

One may think if it is worth bothering about polynomial-time algo-
rithms. It turns out that even if an algorithm is O(n5) or O(n10) (which
are in principle very large orders of magnitude), most of polynomial-time
algorithms work well in practice, as the notation O(nk), k > 0 only mea-
sures the worst-case behavior. Also, classification of problems based on this
criterion is easy to understand, convenient and reasonable, reason why it is
widely used in the literature. Moreover, once it is proven that a problem is
polynomial-time solvable with a large exponent (e.g., O(n10)), it is common
to see more researchers attempting to lower such exponent.

When confronted by a given problem, usually is not trivial for researchers
to give an efficient algorithm (e.g., polynomial-time) to solve it, nor is to
prove such efficient algorithm does not exist. To give a plausible answer,
we could say that a problem is at least as difficult to solve as every other
problem belonging to a large class of problems that are widely known as
“difficult”. The Theory of NP-completeness provides us with a systematic
way to illustrate such idea. Next we give a brief description.

2.3.2 NP and co-NP

Definition 2.8 (Nondeterministic-polynomial time (NP)). Given a deci-
sion problem π. We say π ∈ NP if for every instance of π whose answer is
“yes”, we can point out a certificate (of the fact that the answer is “yes”)
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which can be verified in polynomial time. The class NP is the set of all such
problems.

Example 2.2. Consider the following examples:

• (TSP) As we previously discussed, the decision problem related to TSP
is as follows: Given a graph G = (V,E) with |V | = n, is there a tour
x that visits all the nodes exactly once whose length is no more than a
given number c0?. If the answer is yes, then a certificate of this would
be such tour x, which we could verify that visits each node exactly once
(namely that it is connected and every node has degree 2), compute its
distance and compare it to the given bound c0 in polynomial time.

• (0-1 IP) Given A ∈ Qm×n, b ∈ Qm and c ∈ Qn, consider the 0-1
integer program

min cTx

s.t. Ax ≤ b
x ∈ {0, 1}n

and the decision problem defined by the question “can we find x ∈
{0, 1}n such that Ax ≤ b and cTx ≤ c0?”. Indeed if such x exists, x
itself would be a certificate and we could verify if it satisfies the m con-
straints given by Ax ≤ b plus the requirement cTx ≤ c0 in polynomial
time (as each constraints have n linear terms, thus we could verify if x
satisfies all the conditions in O(mn)). We will later show that general
IP is also in NP.

From the previous definition we can conclude that the certificate of a
“yes” answer to a problem of the NP class is “small” in size, i.e., its size is
bounded by a polynomial function of the input size. If the certificate was
not of polynomial size, we would not be able to verify the “yes” answer in
polynomial time.

In contrast (and this is crucial to understand), the process of coming
up with the answer of the instance of the decision problem (i.e., how to
determine if the answer is yes or no) is irrelevant for this definition (an
example of this is the decision version of the TSP: given a number c0, how
to find a certificate - a tour of length at most c0 that visits all the cities
exactly once -, or prove that such certificate does not exist, is very difficult;
however, if such tour exists and we are provided with such, the process of
verifying that such tour satisfies the conditions can be done in polynomial
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time and thus the TSP is NP). As important as this last observation,
an NP problem is not required to have a polynomial size (polynomial-time
verifiable) certificate for instances of decision problems whose answer is “no”.
Problems like such define another class, which we introduce next.

Definition 2.9 (Complement of NP problems (co-NP)). We say that a
(decision) problem is co-NP if for any instance of such problem, whenever
the answer is “no”, then we can find a certificate of this fact that can be
checked in polynomial time.

Having defined the three classes of problems P, NP and co-NP, we
present the following relationship between them.

Proposition 2.1. P ⊆ NP ∩ co-NP

Proof. Consider a decision problem π ∈ P, i.e., π is polynomial-time solvable
and therefore there exists an algorithm A that solves any instance of π in
polynomial time.

First we prove that π ∈ NP. Indeed, if we are given an instance ρ1 of π
whose answer is “yes”, note that A itself is a certificate that can be verified
in polynomial time: we can apply A on ρ1 and since the answer to ρ1 is
“yes”, A will come up with the “yes” answer in polynomial time, which will
be always correct since A solves correctly any instance of π, in particular
ρ1. Therefore, π ∈ NP.

The proof of π ∈ co-NP is done by the same argument but applying A
on an instance ρ2 of π whose answer is “no”. Therefore π ∈ co-NP.

Combining above results we conclude that π ∈ P =⇒ π ∈ NP∩co-NP,
and the proposition follows.

Before ending this section, we highlight the fact that the statement
P = NP ∩ co-NP has not been proved nor disproved, thus even after more
than 40 years of complexity theory it remains to be an open question. Al-
though most of the related research community believes that this is not
true, this question is one of the most important open questions in mathe-
matics and theoretical computer science. It is such the importance that the
Clay Mathematics Institute stated this question as one of the Millennium
Prize Problems, and whoever manages to prove or disprove this fact will be
awarded a US $1,000,000 by this institution. In addition, you get to skip
the final exam of this class.
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2.3.3 NP-Completeness

Now we will study a class of problems that are known to be “difficult” to
solve. We start by an important definition.

Definition 2.10 (Polynomial-time reduction). Let π1, π2 be decision prob-
lems. We say π1 polynomially reduces to π2, denoted as π1 � π2, if
there exists a mapping φ : π1 → π2 that maps any instance ρ of π1 into an
instance φ(ρ) of π2 satisfying

• ρ is “yes” ⇐⇒ φ(ρ) is “yes”.

• (φ(ρ)) can be constructed in polynomial-time from (ρ).

The mapping φ is called the polynomial-time reduction of π1 to π2.

Remark 2.2. This is equivalent to the statement “Problem π2 is at least as
difficult to solve than problem π1”, i.e., if we are able to solve π2 then we
can solve π1.

Note that this implies the following result.

Theorem 2.1. If π1 � π2 and π2 ∈ P, then π1 ∈ P.

Proof. Indeed, if π2 ∈ P, then there exists a polynomial-time algorithm A
deciding π2. Since π1 � π2, there exists a polynomial time reduction φ from
π1 to π2. Now let ρ ∈ π1 be an arbitrary instance of π1. The following
algorithm Ā solves ρ in polynomial time: Ā = “On input ρ:

(i) Compute φ(ρ)
(ii) Run A on input φ(ρ) and output whatever A outputs”.

Note that Ā runs in polynomial time: step (i) runs in polynomial time
since φ is a polynomial-time reduction, and step (ii) runs in polynomial time
since A solves any instance of π2 (in particular φ(ρ) ∈ π2) in polynomial
time. Then the sum of the running times of steps (i) and (ii) is indeed
polynomial, and thus so is the running time of Ā. As ρ is “yes” ⇐⇒ φ(ρ)
is “yes” (again, since φ is a polynomial time reduction from π1 to π2), it
follows that whatever A decides for φ(ρ) ∈ π2 in step (ii) of Ā also solves
the instance ρ ∈ π1. As this is for an arbitrary instance ρ ∈ π1 done by
the polynomial time algorithm Ā, it follows that all the instances of π1 are
polynomial-time solvable, and therefore π1 ∈ P.
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Now we have the tools to define the classes of problems NP-complete
and NP-hard.

Definition 2.11 (NP-complete and NP-hard). A problem π is said to be
NP-hard if π̃ � π, ∀π̃ ∈ NP (which reads “problem π is at least as difficult
as any problem in NP”). If we also have π ∈ NP, then we say that π is
NP-complete (denoted as NPC).

Intuitively, this definition states that any NP-hard problem is at least
as difficult as any problem in NP. Similarly, any problem which is NP-
complete is at least as difficult as all the other NP problems.

• On the theoretical side, a researcher wanting to prove that P 6= NP
may focus on anNPC problem. Indeed, if any problem inNP requires
more than polynomial time to be solved, so do all the NPC problems
(since these are the most difficult problems in the NP class). Fur-
thermore, a researcher attempting to prove that P = NP only needs
to find a polynomial time algorithm for solving any NPC problem to
achieve this goal.

• Proving that a problem is NP-complete may be ”used to prevent
wasting time” searching for a polynomial time algorithm to solve a
particular problem.

Now we have formally defined NPC as the class of problems known as
difficult to solve. Polynomial- time reduction provides us a tool to prove
that a new problem π is NPC if we know at least one problem π0 ∈ NPC.
More precisely, if we want to prove that a problem π is NPC and we already
know a problem π0 ∈ NPC then we need to prove

1. π ∈ NP.

2. π0 � π.

Definition 2.12 (Satisfiability problem (SAT)). Let U be the ground set
of boolean variables u1, u2, . . . , un. A truth assignment for U is a function
t : U → {T, F}, where T and F states for “True” and “False”. If u ∈ U ,
then u and ū (complement of u) are called literals over U . A clause over
U is a set of literals over U , which represents the logical disjunction of these
literals. We say that a clause is satisfied by a truth assignment if and only
if at least one of the literals in it is true. Let C = {c1, c2, . . . , cm} be a set
of clauses over U . We say C is satisfiable if and only if there exists a truth
assignment which satisfies all the clauses in C simultaneously.
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The SAT statement is as follows: given a set of boolean variables U =
{u1, . . . , un} and a collection of clauses C = {c1, . . . , cm} over U . Is there a
truth assignment t that satisfies all the clauses in C simultaneously?.

Example 2.3. Let U = {u1, u2, u3, u4}, C = {{u1, ū2}, {u3}, {ū1}, {u2, u4}}.
The SAT consists of finding a truth assignment t : U → {T, F} such that
the logic statement

(u1 or not u2) and (u3) and (not u1) and (u2 or u4)

is true. We can see by inspection that the answer to this question is true.
Indeed, if we define t such that

t(u1) = F

t(u2) = F

t(u3) = T

t(u4) = T

then we observe that

(t(u1) or not t(u2)) and (t(u3)) and (not t(u1)) and (t(u2) or t(u4))

⇐⇒ (F or not F ) and (T ) and (not F ) and (F or T )

⇐⇒ (F or T ) and (T ) and (T ) and (F or T )

⇐⇒ (T ) and (T ) and (T ) and (T )

⇐⇒ T

and therefore the requested t exists.

Now we see the answer to the question “where is the original NPC prob-
lem π0”, which is provided by the following theorem by Stephen Cook and
Leonid Levin.

Theorem 2.2 (Cook). SAT is NPC

It turns out that the aforementioned π0 is the SAT problem. Having
knowledge of this fact, we are now capable of proving that other problems
π are NPC. We exemplify the procedure for proving so in the proof of the
following theorem.
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2.3.4 Binary integer program

Theorem 2.3. Binary Integer Programming is NPC

Proof. We first prove that binary IP is NP. Take an instance of a decision
problem related to a binary IP. If its answer is “yes” and we are provided
with a certificate of such answer (a binary vector of size n), we can evalu-
ate it in O(mn) time, since we evaluate m constraints, each with at most
n terms, and then we compare each of the m resulting row with the cor-
responding right hand side (i.e., for a problem Ax ≤ b, x ∈ {0, 1}n and a
certificate x̂ ∈ {0, 1}n, we can compute Ax̂ in O(mn) unit operations and
then compare each aTi x̂ with the corresponding bi for i = 1, . . . ,m, this is in
O(m) operations). Therefore, as we can evaluate a certificate of a “yes” an-
swer in an amount time bounded above by a polynomial function of m and
n (size of the instance), it follows that binary IP is NP. Next, we reduce
SAT to a binary IP. For this we define an arbitrary instance of the problem
known to be NPC, in this case SAT3. Let this instance be defined by the
set of literals U = {u1, . . . , un} and clauses C = {c1, . . . , cm}. We first need
to construct a particular instance of binary IP related to the given arbitrary
SAT instance4, such that the size of this particular instance is a polynomial
function of the size of the SAT instance and the binary IP is feasible if and
only if the arbitrary SAT instance is satisfiable. We do this as follows:

• For each literal ui ∈ U , define a binary decision variable xi ∈ {0, 1}.

• For each clause cj ∈ C, cj = {uj1 , . . . , ujk , ūjk+1, . . . , ūjk+l}, define the
constraint

k∑
i=1

xji +
l∑

i=1

(1− xjk+i) ≥ 1,∀j ∈ {1, 2, . . . ,m} (2.20)

This way we construct a binary IP instance whose constraint j correspond
to the requirement that clause cj must be satisfied, i.e., at least one of the
literals in clause cj must be satisfied as true. Therefore, if this binary IP
instance accepts a feasible solution x̂, then we set t(ui) = T whenever x̂i = 1,
and t(ui) = 0 if x̂i = 0. By feasibility of x̂, this truth assignment t satisfies
all the clauses cj ∈ C since by construction (from the fact that x̂ satisfies
(2.20)), at least one of the elements of each cj is true.

3In the definition of reduction given above, this would be ρ.
4In the definition of reduction given above, this would be φ(ρ).
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Conversely, if there is a satisfying truth assignment t for C, we let x̂i = 1
if t(ui) = T and x̂i = 0 if t(ui) = F . Since t is satisfying assignment, for
all clauses cj ∈ C at least one literal u ∈ cj is such that t(u) = T , which
translates by construction of x̂ that x̂ is feasible solution for the system
given by (2.20). Therefore, we conclude that the arbitrary SAT instance is
satisfiable ⇐⇒ the constructed particular instance of binary IP is feasible.

Lastly, we note that the size of the particular instance of binary IP we
constructed has n decision variables (one for each literal) and m constraints
(one for each clause). Hence its size its clearly O(mn) (the size of the matrix
[A b]), and thus the polynomial reduction of SAT to binary IP is complete.
This means that SAT � binary IP, i.e., binary IP is an NP problem (this
was proved at the beginning of this proof) that is at least as difficult as the
SAT problem. But SAT is NPC, meaning that SAT is at least as difficult
as all the NP problems. Then using transitivity, binary IP is at least as
difficult as any other NP problem, following that binary IP is NPC. This
completes the proof.

Consider the variant of the SAT problem called 3SAT, whose setting is
similar to the one of the SAT problem except for one difference: each clause
cj ∈ C has exactly 3 literals.

2.3.5 3SAT

Theorem 2.4. The 3-SAT problem is NP-Complete.

Proof. We need to prove two things:

1. 3-SAT is in NP.

Proof. Given any truth assignment for all literals, we can then verify
all of the clauses in linear time. Therefore the 3-SAT problem is in
NP.

2. SAT 4 3-SAT, i.e. given an instance of SAT (parameterized by (U,C),
where U is the set of literals, and C the set of clauses), we can construct
an instance of 3-SAT (parameterized by (U ′ ,C ′ )) such that:

(a) (U,C) is satisfiable in SAT ⇐⇒ (U ′, C ′) is satisfiable in 3-SAT.

(b) The size of the instance of (U ′, C ′) is polynomially bounded by
the size of the instance (U,C).
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We will now present the construction method. Let (U,C) be any
instance of SAT, with |C| = m. For every clause Cj ∈ C we will
construct a set of clauses C ′j ⊆ C ′. Each clause in C ′j will have
literals from U and additional literals from the set U ′j that will be

used only in clauses inside C ′j . So we have

U ′ = U ∪

 m⋃
j=1

U ′j


C ′ =

m⋃
j=1

C ′j

The construction of U ′j and C ′j will depend on the number of literals
k in clause Cj = {z1, . . . , zk}.

• Case 1: k = 1, Cj = {z1}. Then

U ′j := {yj1, y
j
2}

C ′j := {{z1, y
j
1, y

j
2}, {z1, ȳ

j
1, y

j
2}, {z1, y

j
1, ȳ

j
2}, {z1, ȳ

j
1, ȳ

j
2}}

• Case 2: k = 2, Cj = {z1, z2}. Then

U ′j := {yj1}

C ′j := {{z1, z2, y
j
1}, {z1, z2, ȳ

j
1}}

• Case 3: k = 3, Cj = {z1, z2, z3}. Then

U ′j := ∅
C ′j := {{z1, z2, z3}}

• Case 4: k ≥ 4, Cj = {z1, . . . , zk}. Then

U ′j :={yj1, y
j
2, . . . , y

j
k−3}

C ′j :={{z1, z2, y
j
1}, {ȳ

j
1, z3, y

j
2}, . . . ,

{ȳjq , zq+2, y
j
q+1}, . . . , {ȳ

j
k−4, zk−2, y

j
k−3}, {ȳ

j
k−3, zk−1, zk}}

Proof of 2(a). We will first prove that if (U,C) is satisfiable in SAT
=⇒ (U ′, C ′) is satisfiable in 3-SAT.
Given a solution that satisfies the (U,C) SAT instance, let t : U →
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{T, F} (true and false respectively) be a function that returns the
assignment of literals in U of such SAT solution. We will now prove
there exists an assignment function t′ : U ′ → {T, F} that satisfies
the 3-SAT instance (U ′, C ′). We will do this by proving that for each
clause Cj ∈ C satisfied by t we can also satisfy all clauses C ′j ⊆ C ′

with an assignment t′ defined by:

• Case 1: k = 1, Cj = {z1}. We set t′(z1) = t(z1) = T (we

know z1 must be true trivially). t′(yj1) and t′(yj2) can be assigned
arbitrarily. Trivially all clauses in C ′j will be satisfied by t′.

• Case 2: k = 2, Cj = {z1, z2}. We set t′(z1) = t(z1) and t′(z2) =

t(z2). t′(yj1) can be assigned arbitrarily. All clauses in C ′j will be
satisfied by t′ since we know either t(z1) = T or t(z2) = T .

• Case 3: k = 3, Cj = {z1, z2, z3}. We set t′(z1) = t(z1), t′(z2) =
t(z2), and t′(z3) = t(z3) which trivially guarantees the only clause
in C ′j will be satisfied by t′.

• Case 4: k ≥ 4, Cj = {z1, . . . , zk}. We first set t′(zi) = t(zi), ∀i ∈
{1, . . . , k}. We know there exists l ∈ {1, . . . , k} such that t(zl) =
T .

– If l ∈ {1, 2} then set t′(yji ) = F,∀i ∈ {1, . . . , k − 3}. We
can see all clauses in C ′j will be satisfied by t′ since the first
clause is already satisfied by zl, and all the others have a ȳji
literal.

– If l ∈ {3, . . . , k−2} then set t′(yji ) = T, ∀i ∈ {1, . . . , l−2} and

t′(yji ) = F , ∀i ∈ {l − 1, . . . , k − 3}. We can see all clauses in
C ′j will be satisfied by t′ since clause containing zl is already
satisfied, all the previous clauses have a yji literal, and all the

other clauses (after the clause containing zl) have a ȳji literal.

– If l ∈ {k − 1, k} then set t′(yji ) = T, ∀i ∈ {1, . . . , k − 3}. We
can see all clauses in C ′j will be satisfied by t′ since the last
clause is already satisfied by zl, and all the others have a yji
literal.

Now we will prove that if (U ′, C ′) is satisfiable in 3-SAT =⇒ (U,C)
is satisfiable in SAT.
We have a given assignment t′ that satisfies the (U ′, C ′) 3-SAT in-
stance. We will build an assignment t that satisfies the (U,C) SAT
instance by having the same assignments as t′ for all zi, i ∈ {1, . . . , k}.
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We will prove that for each set of clauses C ′j ∈ C ′ satisfied by t′ we
also satisfy clause Cj ⊆ C with assignment t:

• Case 1: k = 1, Cj = {z1}. Is trivial to see that t′(z1) = T = t(z1)
so Cj is satisfied.

• Case 2: k = 2, Cj = {z1, z2}. Either t′(z1) = T = t(z1) or
t′(z2) = T = t(z2) so Cj is satisfied.

• Case 3: k = 3, Cj = {z1, z2, z3}. Trivially Cj is satisfied.

• Case 4: k ≥ 4, Cj = {z1, . . . , zk}. We claim that for some l ∈
{1, . . . , k} we have that t′(zl) = T = t(zl), and so Cj is satisfied.
Suppose for contradiction that t′(zl) = F,∀l ∈ {1, . . . , k}. By the
first clause and induction we have t′(yji ) = T, ∀i ∈ {1, ..., k − 3}.
However, this implies that the last clause in C ′j is not satisfied
by t′ , which is the required contradiction.

Proof of 2(b). Let |C| = m, and |U | = n. For every Cj ∈ C the
number of new variable is at most |Cj | + 1 ≤ n + 1, and the total
number of clauses in C ′j is at most |Cj |+ 3 ≤ n+ 3. Therefore for the
number of literals we have |U ′| ≤ n+m(n+ 1), and for the number of
clauses |C ′| ≤ m(n+ 3) respectively. Thus, the new 3-SAT instance is
bounded polynomially in the size of the original SAT instance.

Thus we finished proving SAT 4 3-SAT, therefore 3-SAT is NP-
Complete.

2.3.6 Vertex-Cover Problem

Definition 2.13 (Vertex-Cover). A vertex-cover of an undirected graph G =
(V,E) is a subset V ′ of V such that if edge (u, v) is an edge of G then either
u ∈ V ′ or v ∈ V ′ (or both).

Definition 2.14 (Vertex-Cover Problem). Given G = (V,E) and a positive
integer k, the goal is to determine a vertex-cover with size of at most k.

Theorem 2.5. The Vertex-Cover Problem is in NP-Complete.

Proof. 1. We first verify that the Vertex-Cover Problem is in NP.
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Figure 2.2: Vertex-Cover Example, where blue vertices are in V ′

1 2 3

4 5 6 7

Proof. For each vertex in V , remove all incident edges and check if all
edges were removed from E. This can be checked in at most |E|+ |V |
time. Thus, the Vertex-Cover Problem is in NP.

2. We then prove that 3-SAT 4 Vertex-Cover Problem, i.e. given an
instance of 3-SAT (parameterized by (U,C)), we can construct an
instance of the Vertex-Cover Problem (parameterized by G = (V,E)
and k) such that:

(a) (U,C) is satisfiable in 3-SAT ⇐⇒ {G = (V,E), k} is satisfiable
in the Vertex-Cover Problem.

(b) The size of the instance {G = (V,E), k} is polynomially bounded
by the size of the instance (U,C).

To construct {G = (V,E), k} we start by including vertices into V :

• For every literal Ui ∈ U we construct two vertices Vi and V̄i.

• For every clause Cj ∈ C we construct three vertices C1
j , C

2
j , and

C3
j .

Then we include the following edges into E:

• (Vi, V̄i), ∀i ∈ {1, . . . , |U |}.
• (C1

j , C
2
j ), (C2

j , C
3
j ), (C3

j , C
1
j ), ∀j ∈ {1, . . . , |C|}.

• For every clause Cj = {z1, z2, z3} ∈ C, and for every t ∈ {1, 2, 3}:
include edge (Ctj , Vi) if zt = Vi or include edge (Ctj , V̄i) if zt = V̄i.

We then set k = n+ 2m.

On Figure 2 we can see a construction example for U = {U1, U2, U3, U4, U5}
and C = {{U1, Ū2, U3}, {U2, U3, U4}, {U1, U4, Ū5}}.
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Figure 2.3: Construction example of a Vertex-Cover Problem instance from
a 3-SAT instance

V1 V̄1 V2 V̄2 V3 V̄3 V4 V̄4 V5 V̄5

C1
1

C2
1

C3
1 C1

2

C2
2

C3
2 C1

3

C2
3

C3
3

Proof of 2(a). Let |U | = n and |C| = m. We will first prove that
(U,C) is satisfiable in 3-SAT =⇒ {G = (V,E), k} is satisfiable in the
Vertex-Cover Problem.
Let t : U → {T, F} be a function that returns the assignment of
literals in U that satisfy the 3-SAT instance. We will now prove there
exists a vertices set V ′ that satisfies the instance {G = (V,E), k} of
the Vertex-Cover Problem.

Include in V ′ all vertices that correspond to true literals, i.e., if t(Ui) =
T then include Vi in V ′ and if t(Ui) = F then include V̄i. Since the
3-SAT instance is satisfiable for clause Cj = {z1, z2, z3}, then there
exists l ∈ {1, 2, 3} such that t(zl) = T ; then include vertices Ctj in V ′

for t ∈ {1, 2, 3}\{l}.

Note that the constructed V ′ is of size k. Moreover, it is easily verified
that V ′ is a vertex-cover.

Now we will prove that {G = (V,E), k} is satisfiable in the Vertex-
Cover Problem =⇒ (U,C) is satisfiable in 3-SAT.
We have a given vertex-cover V ′ that satisfies the Vertex-Cover Prob-
lem instance with |V ′| ≤ k. We will build an assignment t that satisfies
the (U,C) 3-SAT instance.

For every edge (Vi, V̄i),∀i ∈ {1, . . . , |U |} we know at least one if its
vertices is included in V ′. For every edges of the form

(C1
j , C

2
j ), (C2

j , C
3
j ), (C3

j , C
1
j ),∀j ∈ {1, . . . , |C|}
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we know at least two of the vertices C1
j , C

2
j , C

3
j is in V ′. Thus |V ′| ≥

k = n + 2m, and since we know |V ′| ≤ k, then |V ′| = k. This
means that exactly one of the Vi or V̄i is in the vertex-cover V ′,∀i ∈
{1, . . . , |U |}; and also exactly two of C1

j , C
2
j , C

3
j are in the vertex-cover

V ′, ∀j ∈ {1, . . . , |C|}. Then we set the assignment as:

t(Ui) =

{
T if Vi ∈ V ′

F if V̄i ∈ V ′

It is now straight forward to verify that the 3-SAT instance is satisfi-
able.

Proof of 2(b). The number of vertices of the instance {G = (V,E), k}
of the Vertex-Cover Problem is given by |V | = 2n + 3m, the number
of edges is |E| = n+ 3m+ 3m, and k = n+ 2m. Thus, the instance of
the Vertex-Cover Problem is bounded polynomially in the size of the
original 3-SAT instance.

Thus we finished proving 3-SAT 4 Vertex-Cover Problem, therefore the
Vertex-Cover Problem is NP-Complete.

2.4 Suggested exercises

I reccomend that you read all the worked-out examples and excercises in
chapter I.5 of textbook.
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Chapter 3

Review of Polyhedral Theory

3.1 Basic Definitions and Results

Definition 3.1 (Hyperplane). A hyperplane is a set defined by a single
equality. Precisely, a hyperplane in Rn is a set of the form

H = {x ∈ Rn | a>x = b},

where a ∈ Rn, b ∈ R. It separates the space into two half-spaces.

Definition 3.2 (Half-space). A half-space is a set defined by a single affine
inequality. Precisely, a half-space in Rn is a set of the form

H = {x ∈ Rn | a>x ≤ b},

where a ∈ Rn, b ∈ R. The boundary of a half-space is a hyperplane.

Definition 3.3 (Polyhedron). The intersection of a finite number of half-
spaces is a polyhedron.

Since half-spaces are convex sets, therefore polyhedron is also a convex
set.

Definition 3.4 (Polytope). A bounded polyhedron is a polytope.

3.1.1 Fourier-Motzkin Projection

Definition 3.5. Let X ⊆ Rn. Then the projection of X onto the first n−1
components is

Projx1,...,xn−1
(X) = {(x1, . . . , xn−1) ∈ Rn−1|∃xn ∈ R(x1, . . . , xn−1, xn) ∈ X}.

63
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Theorem 3.1 (Fourier-Motzkin). Let P ⊆ Rn be a polyhedron. Then
Projx1,...,xn−1

(P ) is a polyhedron.

Proof. Suppose P = {x|a>i x ≤ bi, i ∈ {1, . . . ,m}}. A vector x is contained
in P if and only if

ainxn ≤ bi − āi>x̄,

where v̄ is the projection of v onto the first n − 1 coordinates. Let I1 =
{i|ain > 0}, I2 = {i|ain < 0}, and I3 = {i|ain = 0}. In these three cases we
can simplify the inequalities by dividing through by ain to get

xn ≤ b̂i − âi>x̄, xn ≥ b̂i − âi>x̄, and 0 ≤ b̂i − âi>x̄, (3.1)

respectively. Let Q ⊆ Rn−1 be the set of points satisfying

b̂j − âj x̄ ≥ b̂k − âkx̄ ∀j ∈ I1, k ∈ I2 (3.2)

0 ≤ b̂i − âix̄ ∀i ∈ I3 (3.3)

We will show that Q = Projx1,...,xn−1
(P ). Indeed, for any x̄ ∈ Proj(P ) there

exists xn such that (x̄, xn) ∈ P . Then x̄ satisfies the system of inequalities
for Q, and thus x̄ ∈ Q. Conversely, for any x̄ ∈ Q,

min
j∈I
{b̂j − âj x̄} ≥ max

k∈I2
{b̂k − âkx̄},

and so we can pick xn between them. Then (x̄, xn) satisfies the conditions
of all types for P , and is thus x̄ ∈ Proj(P ).

Proposition 3.1. The use of the term “max” is justified for the LP problem

z∗ = sup{c>x |Ax ≤ b}

(assuming the supremum exists.)

Proof. Let Q = {(x, z) ∈ Rn+1|Ax ≤ b, z−c>x ≤ 0}. Then z∗ is the largest
value of z for which there is an x such that (x, z) ∈ Q. Project out all of
the x variables to get Q′. Then z∗ = supz∈Q′z where Q′ is a 1-dimensional
polyhedron, i.e. a closed interval. Thus if the supremum exists it is actually
obtained by some z ∈ Q′.

The Fourier-Motzkin procedure can be use to prove the following funda-
mental results:
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Theorem 3.2 (Farkas’ Lemma). Exactly one of the following systems has
a solution:

Ax = b, x ≥ 0,

y>A ≤ 0, y>b > 0.

Theorem 3.3 (Farkas-Minkowski-Weyl Theorem). A convex cone is a poly-
hedron if and only if it is finitely generated. Therefore

{x ∈ Rn | Ax ≤ 0} =

{
x =

k∑
i=1

λixi : λi ≥ 0, ∀i ∈ {1, 2, , . . . , k}

}
,

where |k| <∞.

Theorem 3.4 (Decomposition Theorem ). A set P is a polyhedron if and
only if P = Q+ C, where Q is a polytope and C is a polyhedral cone.

3.1.2 Duality Theory for Linear Programming

Given a maximization (resp. minimization) linear program, a feasible so-
lution gives a lower bound (resp. upper bound) to the optimal objective
function value. For every linear program, there is an associated linear pro-
gram which can be used to obtain bounds in other direction, the so -called
dual bound. This associated linear program is called a dual program. For
a minimization (resp. maximization) program the dual gives a lower (resp.
upper) bound on the optimal objective function. Next the general construc-
tion of a dual is presented.

Definition 3.6. 1. Given a linear program with m constraints and n
variables, the dual has one variable for each constraint of the lin-
ear program (we will often call the starting linear program as the
primal linear program) and one constraint for each variable of the pri-
mal, i.e. the dual has n constraints and m variables.

2. If the primal is a minimization problem, then the dual is a maximiza-
tion problem. Similarly if the primal is a maximization problem, then
the dual is a minimization problem.

3. The objective coefficients of the primal become the right-hand-sides of
the dual and the right-hand-sides of the primal become the objective
coefficients of the dual.
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4. Each column in the left-hand-side of the primal constraints matrix
(i.e. coefficients corresponding to a particular variable) becomes a row
(i.e. coefficients of a single constraint) in the left-hand-side of the dual
constraints matrix and vice-verse.

5. Based on whether the primal is min or a max problem, there is an
exact relationship between
(A) sign of constraint in primal! type of corresponding variable in dual
and
(B) type of variable in primal!sign of corresponding constraint in dual.

For a minimization problem, the dual is found as follows. Consider first
the primal LP:

min

n∑
j=1

cjxj (3.4)

s.t.
n∑
j=1

aijxj ≥ bi for all i = 1, ...,m1 (3.5)

n∑
j=1

aijxj = bi for all i = m1 + 1, ...,m2 (3.6)

n∑
j=1

aijxj ≤ bi for all i = m2 + 1, ...,m (3.7)

xj ≥ 0 for all j = 1, ..., n1 (3.8)

xj is free for all j = n1 + 1, ..., n2 (3.9)

xj ≤ 0 for all j = n2 + 1, ..., n. (3.10)
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Then the dual is:

max

m∑
i=1

biyi (3.11)

s.t.

m∑
i=1

aijyi ≤ cj for all j = 1, ..., n1 (3.12)

m∑
i=1

aijyi = cj for all j = n1 + 1, ..., n2 (3.13)

m∑
i=1

aijyi ≥ cj for all i = n2 + 1, ..., n (3.14)

yi ≥ 0 for all i = 1, ...,m1 (3.15)

yi is free for all i = m1 + 1, ...,m2 (3.16)

yi ≤ 0 for all i = m2 + 1, ...,m. (3.17)

The dual of a dual is the primal. So if the dual above (i.e. (3.11) -
(3.17)) was the original LP, then (3.4) - (3.10) would be its dual. �

Example 3.1. Primal:

max x1 + 2x2 + 3x3 (3.18)

s.t. 8x1 + 9x2 + 10x3 ≥ 4 (3.19)

11x1 + 12x2 + 13x3 = 5 (3.20)

14x1 + 15x2 + 16x3 ≤ 6 (3.21)

17x1 + 18x2 + 19x3 ≤ 7 (3.22)

x1 ≥ 0 (3.23)

x2 is free (3.24)

x3 ≤ 0. (3.25)

Then the dual is:

min 4y1 + 5y1 + 6y3 + 7y4 (3.26)

s.t. 8y1 + 11y2 + 14y3 + 17y4 ≥ 1 (3.27)

9y1 + 12y2 + 15y3 + 18y4 = 2 (3.28)

10y1 + 13y2 + 16y3 + 19y4 ≤ 3 (3.29)

y1 ≤ 0 (3.30)

y2 is free (3.31)

y3, y4 ≥ 0. (3.32)
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To clarify again, the rules for the the relationship between the sign of
the constraints and that of the corresponding variable in the dual are the
following:

max min

Constraint type Variable type

“≤” Variable is non-negative “≥ 0”

“≥” Variable is non-positive “≤ 0”

“=” Variable is free

Variable type Constraint type

Variable is non-negative “≥ 0” “≥ ”

Variable is non-positive “≤ 0 ” “≤”

Variable is free “=”

The above table works both ways. That is if we have a max primal, then to
construct the dual go from left to right. If we have a min primal, then to
construct the dual go from right to left.

Proposition 3.2 (‘Weak Duality’ aka the bounding result). If x̂ is any
feasible solution of minimization (resp. maximization) primal linear prob-
lem whose objective function is cTx and ŷ is any feasible solution of dual
maximization (resp. minimization) linear problem whose objective function
is bT y, then cT x̂ ≥ bT ŷ (resp. cT x̂ ≤ bT ŷ).

There is an important consequence of Proposition 3.2, that we present
next.

Proposition 3.3. If the primal is unbounded, then the dual is infeasible.

The weak dual result says that if we write the dual of a maximization
problem (resp minimization problem), then any feasible solution of the dual
gives an upper bound (resp. lower bound) to the optimal objective function
value of the primal. We would like to next know how good is this bound?
It turns out the bound is tight in the sense that optimal objective function
value of the primal and dual have exactly the same value. Formally the
following statement can be proven.

Proposition 3.4 (‘Strong Duality Result’ aka best dual bound is tight).
Suppose that the primal LP (whose objective function is cTx) has an opti-
mal solution x∗, then the dual LP (whose objective function is bT y) has an
optimal solution y∗ such that cTx∗ = bT y∗. Moreover, the converse is also
true. Therefore,
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1. The primal LP has an optimal solution if and only if the dual has an
optimal solution.

2. In the case of existence of optimal solutions, the optimal objective func-
tion values of the primal and dual are equal.

If the primal is infeasible, then by the fact that the dual of a dual is
the primal and Proposition 3.3 intuitively it appears the dual may be un-
bounded. It turns out that the dual may also be infeasible. Here is a classical
example:

Example 3.2. Consider the LP:

max 2x1 − x2 (3.33)

s.t. x1 − x2 ≤ 1 (3.34)

−x1 + x2 ≤ −2 (3.35)

x1, x2 ≥ 0 (3.36)

and its dual:

min y1 − 2y2 (3.37)

s.t. y1 − y2 ≥ 2 (3.38)

−y1 + y2 ≥ −1 (3.39)

y1, y2 ≥ 0. (3.40)

Both the primal and dual are infeasible. �

Now we are ready to give the complete relationship between a primal and
its dual. This is illustrated next. A X implies the combination is possible,
while × implies that the combination is not possible.

Dual Optimal Dual Infeasible Dual Unbounded

Primal Optimal X × ×
Primal Infeasible × X X

Primal Unbounded × X ×

The first row and column in table above are consequence of Proposition 3.4.
The entries (2, 3), (3, 2), (3, 3) in the table above are illustrated/consequence
of Proposition 3.3. Example 3.2 is an illustration of entry (2, 2).

A very important consequence of the duality theorem is the so called
Complementary Slackness result. We next present this result.
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Proposition 3.5 (Complementary Slackness). Let x∗ ∈ Rn and y∗ ∈ Rm be
primal and dual feasible respectively. Then x∗ and y∗ are optimal solutions
for the primal and dual problems respectively if and only if they satisfy the
following conditions:

1. Primal complementary conditions: For each constraints of the primal -
either the constraint is tight, i.e.

∑n
j=1 aijx

∗
j = bi or the corresponding

dual variable y∗i = 0.

2. Dual complementary conditions: For each constraints of the dual -
either the constraint is tight, i.e.

∑m
i=1 aijy

∗
i = cj or the corresponding

primal variable x∗j = 0. �

3.2 Recession Cone, Linearity Space of a Polyhe-
dron

Definition 3.7 (Direction of Recession). Given a nonempty convex set C,
a vector d is a direction of recession at a point x0 ∈ C if x0 + λd ∈ C for
all λ ≥ 0.

It is straightforward to see that the set of recession directions at a point
x0 for a set C forms a cone1

Proposition 3.6. If C is a closed convex set, the set of recession directions
is identical at each point in C.

Proof. It is sufficient to show that d is recession direction at x ∈ C, then d
is recession direction at y ∈ C. In particular set λ0 ≥ 0. We will show that
λ0d+ y ∈ C. Observe that, for any 1 > ε > 0

C 3 ε
(
x+

λ0

ε
d

)
+ (1− ε)y = (εx+ (1− ε)y) + λ0d,

where the first containment is due to convexity of C. As ε→ 0, we have that
(εx+(1−ε)y)+λ0d approaches y+λ0d. By closedness of C, y+λ0d ∈ C.

Since a polyhedron is a closed convex set, it makes sense to talk about
the recession cone of the polyhedron (since the recession cone for any point
is identical). Therefore, we obtain the following definition.

1A cone is set that is closed under multiplication with non-negative scalars, i.e C is
cone iff x ∈ C implies λx ∈ C for all λ ≥ 0.
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Definition 3.8 (Recession Cone). For convex set S ⊆ Rn, the recession
cone (denoted as rec.cone(S)) is given by

rec.cone(S) = {d ∈ Rn | x+ λd ∈ S, ∀λ ≥ 0,∀x ∈ S}.

Proposition 3.7. If P = {x ∈ Rn | Ax ≤ b}, then rec.cone(P ) = {x ∈ Rn |
Ax ≤ 0}.

Proof. We first prove rec.cone(P ) ⊇ {x ∈ Rn | Ax ≤ 0}. Let x ∈ P and
d ∈ {u ∈ Rn | Au ≤ 0}. Then for all λ ≥ 0, A(x+λd) = Ax+λAd ≤ Ax ≤ b,
where the first inequality uses the fact that λ ≥ 0 and Ad ≤ 0 and the last
inequality follows from the definition of P .

Now we show rec.cone(P ) ⊆ {x ∈ Rn | Ax ≤ 0}. Let x ∈ P and
d ∈ rec.cone(P ). Assume by contradiction, Ad � 0, i.e. the ith component
of the vector (Ad)i > 0. Then (A(x + λd))i = (Ax)i + λ(Ad)i > bi for
sufficiently large λ, which is a contradiction since (A(x+ λd))i ≤ b.

Definition 3.9 (Linearity Space). For a given convex set S ⊆ Rn, the
linearity space is the set lin.space(S) = {d ∈ Rn | x+ λd ∈ S, ∀λ ∈ R, ∀x ∈
S}.

The linearity space of a convex set is the set of lines in the set.

Definition 3.10 (Pointed Polyhedron). A polyhedron is pointed if lin.space(P ) =
{0}.

A nonempty polyhedron is pointed when it does not contain any line.

Proposition 3.8. For P = {x ∈ Rn | Ax ≤ b} ⊆ Rn, lin.space(P ) = {x ∈
Rn | Ax = 0}.

Proof. By definition, lin.space(P ) = rec.cone(P ) ∩ rec.cone(−P ). Since
rec.cone(P ) = {x ∈ Rn | Ax ≤ 0}, we have that lin.space(P ) = {x ∈
Rn | Ax = 0}.

3.3 Dimension of a Polyhedron

Definition 3.11 (Affine Combination). A point x ∈ Rn is an affine combi-
nation of x1, . . . , xt ⊆ Rn if there exists scalars λ1, . . . , λt such that

∑t
i=1 λix

i

and
∑t

i=1 λi = 1.

What does it mean for ten points to be affinely independent? No point
of these ten can be expressed as an affine combination of the other nine
points.
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Definition 3.12 (Affine Independent). A set of points x1, . . . , xk ∈ Rn are
said to be affinely independent if none of the points can be written as an
affine combination of the other vectors.

Proposition 3.9. A set of points x1, . . . , xk ∈ Rn are affinely independent
if and only if the unique solution to

∑k
i=1 αix

i = 0 and
∑k

i=1 αi = 0 is
ai = 0,∀i = 1, . . . , k.

Proof. We first prove the ‘if’ part. Assume without loss of generality, x1 =∑k
i=2 λix

i where
∑k

i=2 λi = 1. Then α1 = −1 and αi = λi for i ∈ {2, . . . , k}
is a nonzero solution to

∑k
i=1 αix

i = 0 and
∑k

i=1 αi = 0.

To show the converse, assume that
∑k

i=1 αix
i = 0 and

∑k
i=1 αi = 0 has

a nonzero solution. Without loss of generality assume that α1 6= 0. Then
we have that x1 =

∑k
i=2−αi/α1x

i where
∑k

i=2−αi/α1 = 1.

Linear independence implies affine independence but the converse is not
true.

Observation 3.1. The maximum number of affinely independent points in
Rn is n+ 1.

Proposition 3.10. Given x1, . . . , xm ∈ Rn, the following are equivalent:

(i) x1, . . . , xm are affinely independent;

(ii) x2 − x1, x3 − x1, . . . , xm − x1 are linearly independent;

(iii)

[
x1

1

]
,

[
x2

1

]
, . . . ,

[
xm

1

]
are linearly independent.

Definition 3.13 (Affine Subpace/Affine Set). A subset A of Rn is an affine
space if A is closed under taking affine combinations.

An affine subspace of Rn is a translated linear subspace. The linear
subspaces are precisely the affine subspaces containing the origin. An affine
set is represented by Ax = b while a linear subspace may be represented as
Ax = 0.

Definition 3.14 (Affine Hull). The inclusionwise minimal affine space con-
taining a set S ∈ Rn is called the affine hull of S and is denoted as aff.hull(S).

Definition 3.15 (Dimension). The dimension of a polyhedron P is the di-
mension of its affine hull and is denoted as dim(P ).
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We say a polyhedron P := {x ∈ Rn | A=x ≤ b=, A≤x ≤ b≤} if all the
feasible points belonging to the polyhedron satisfy the inequality A=x ≤ b=
at equality. For every inequality in the set A≤x ≤ b≤, there exists a point
in P which does not satisfy this inequality as equality.

Proposition 3.11. Let P = {x ∈ Rn | A=x ≤ b=, A≤x ≤ b≤} be a
nonempty polyhedron, then there exists x0 ∈ P such that A≤x0 < b≤, A=x0 =
b=.

Proof. Let the set of constraints A≤x ≤ b≤ be indexed by I≤. By definition,
for each i ∈ I≤, there is a point xi ∈ P such that aixi < bi. It is easy to verify
the point x0 = 1/|I≤|

∑
i∈I≤ x

i satisfies A≤x0 < b≤ and A=x0 = b=.

Proposition 3.12. Let P = {x ∈ Rn | A=x ≤ b=, A≤x ≤ b≤} be a
nonempty polyhedron, then aff.hull(P ) = {x ∈ Rn | A=x = b=} = {x ∈
Rn | A=x ≤ b=}.

Proof. We first show aff.hull(P ) ⊆ {x ∈ Rn | A=x = b=}. Since P ⊆ {x ∈
Rn | A=x = b=}, aff.hull(P ) is the smallest affine subspace containing P ,
and {x ∈ Rn | A=x = b=} is an affine subspace, we obtain this containment.

The containment {x ∈ Rn | A=x = b=} ⊆ {x ∈ Rn |A=x ≤ b=} is trivial.

Finally we show {x ∈ Rn | A=x ≤ b=} ⊆ aff.hull(P ). Let x0 ∈ {x ∈ Rn |
A=x ≤ b=}. Pick x′ ∈ P such that A=x′ ≤ b=, A≤x′ < b≤ (we are using
the fact that P is nonempty and Proposition 3.11). There are two cases to
consider. When x0 = x′, we have x0 ∈ P , which implies x0 ∈ aff.hull(P ).
When x0 6= x′, since A=x′ ≤ b= and A≤x′ < b≤, there exists a strict
convex combination of x0 and x′ denoted by x2 that satisfies A=x2 ≤ b=,
A≤x2 ≤ b≤, x2 6= x′. In particular, x2 ∈ P . Therefore x0 ∈ aff.hull(P ) since
x0 can be expressed as affine combination of x′ and x2.

Corollary 3.1. Let P be a polyhedron such that P ⊆ Rn, P 6= ∅, P = {x ∈
Rn | A=x ≤ b=, A≤x ≤ b≤}. Then dim(P ) = n− rank(A=).

3.4 Faces of a Polyhedron

Definition 3.16 (Valid Inequality). An inequality π>x ≤ π0 is a valid
inequality for the set S ∈ Rn if S ⊆ {x ∈ Rn | π>x ≤ π0}.

Definition 3.17 (Face of a Polyhedron). Let P ∈ Rn be a polyhedron.
Given a valid inequality π>x ≤ π0 for P , we define a face of P as the set
P ∩ {x ∈ Rn | π>x = π0}.
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Note that a more general definition of a face of a convex set C is the
following. A subset F ⊆ C is a face if for all x ∈ F the following property
holds: If x =

∑t
i=1 λix

i where xi ∈ C for all i = 1, . . . , t,
∑t

i=1 λi = 1
and λi ≥ 0 for all i = 1, . . . , t, then xi ∈ F for all i = 1, . . . , t. For
polyhedron, these two definitions are identical, although this is not true for
general convex sets. We will not work with this definition in this class.

Observation 3.2. Let P ⊆ Rn be a polyhedron. Then P is a face of itself.

Definition 3.18 (Proper Face). A face of P is called a proper face of P if
it is nonempty and is strictly contained in P .

Proposition 3.13. Let P := {x ∈ Rn | Ax ≤ b}. Let F be a face of P .
Then F = {x ∈ P | A′x = b′}, where A′x ≤ b′ is a subsystem of Ax ≤ b.

Proof. Let F = {x ∈ P | π>x = π0} where π>x ≤ π0 is a valid inequality
for P . Equivalently, we have F = argmax{π>x | x ∈ P}. Consider the
following linear program and its dual:

(Primal) π0 = max π>x

s.t. Ax ≤ b
(Dual) π0 = min y>b

s.t. y>A = π>

y ≥ 0

Let y∗ be a dual optimal solution. Let y′ be the sub-vector of y∗ with positive
components. Let A′x ≤ b′ be the subsystem of Ax ≤ b corresponding to y′.
Now the result is proven by establishing the following claim: F = {x ∈ P |
A′x = b′}. To see why the claim holds, notice

x̂ ∈ F ⇔ x̂ ∈ P and π>x̂ = π0 ⇔ x̂ ∈ P and y′>A′x̂ = y′>b′ ⇔ x̂ ∈ P and A′x̂ = b′,

where the last equality is obtained using the fact that y′ > 0 and A′x̂ ≤
b′.

Corollary 3.2. For a nonempty polyhedron, the following hold:

(i) The number of faces of the polyhedron is finite (since number of com-
binations of a finite number of constraints is finite);

(ii) A face is a polyhedron;

(iii) A face of a face is a face of the original polyhedron.
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Definition 3.19 (Facet). Inclusionwise maximal proper faces of a polyhe-
dron are called facets.

Maximal face cannot be contained in a bigger face of the polyhedron
other than itself. Since it is a proper face, it should be a proper subset of
P .

Proposition 3.14. Let P := {x ∈ Rn|A≤x ≤ b≤, A=x = b=} 6= ∅ and ∃
at least one non-redundant inequality of A≤x ≤ b≤. Assume all inequalities
in A≤x ≤ b≤ are non-redundant. Then the facets of P are in bijection with
the inequalities in A≤x ≤ b≤. In particular, F is a facet ⇐⇒ F = {x ∈
P |αTx = β}, where αTx ≤ β is an inequality from A≤x ≤ b≤.

Proof. ⇒: Since F is a facet, F = {x ∈ P |A′x = b′} where A′x ≤ b′ is a
subsystem of A≤x ≤ b≤. Let αTx ≤ β be one inequality in A′x ≤ b′. Let
F̂ = {x ∈ P |αTx = β}. Observe that F ⊆ F̂ ⊆ P .
Since no inequality in A≤x ≤ b≤ is redundant and αTx ≤ β is one of them,
∃x0 ∈ P , such that αTx0 < β. Thus F̂ is a proper face of P. As we assume
F is a maximal proper face of P , we obtain F = F̂ .
⇐: Let αT ≤ β is an inequality from A≤x ≤ b≤, and let Âx ≤ b̂ be
the remaining inequalities in A≤x ≤ b≤. We will show that F = {x ∈
P |αTx = β} is non-empty, so that it is indeed a face. By previous lemma,
there exits an x1 ∈ P such that A=x1 = b=, αTx1 < β, Âx1 < b̂. Since
αTx ≤ β is not redundant inequality of P , there exists an x2 such that
A=x2 = b=, αTx2 > β, Âx2 ≤ b̂. Then there exists x̂, that is a convex
combination of x1 and x2, satisfies A=x0 = b=, αTx0 = β, Âx0 < b̂. This
implies F is a nonempty face.

Corollary 3.3. Let P := {x ∈ Rn|A≤x ≤ b≤, A=x = b=} 6= ∅ and ∃ at
least one non-redundant inequality of A≤x ≤ b≤. Assume all inequalities
in A≤x ≤ b≤ are non-redundant. Let F be a facet of P . Then dim(F ) =
dim(P )− 1.

Proof. According to Proposition 1, F = {x ∈ P |αTx = β} = {A=x =
b=, αTx = β, Âx ≤ b̂}, where αTx ≤ β is an inequality from A≤x ≤ b≤

and Âx ≤ b̂ are the remaining inequalities in A≤x ≤ b≤. Then dim(F ) =

n− rank
[
A=

α

]
. Suffice to prove α is not a linear combination of A=.

Suppose otherwise there exists λ such that α = λTA=. As P = {x|A=x =
b=, αTx ≤ β, Âx ≤ b̂} is not empty, we have β ≥ λT b=; i.e., {x|A=x =
b=} ⊆ {x|αTx = λT b=} ⊆ {x|αTx ≤ β}, contradicted with the fact that
αTx ≤ β is not redundant.
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Proposition 3.15. Let P = {x ∈ Rn|Ax ≤ b} be a nonempty polyhedron.
F is a minimal face of P if and only if ∅ 6= F ⊆ P and F is an affine
subsystem, i.e., F = {x ∈ Rn|A′x = b′} where A′x ≤ b′ is a subsystem of
Ax ≤ b.

Proof. 1. If F is a non-empty affine subspace and a face of P , then clearly
F cannot have a facet (by Proposition 7.6) and therefore F is a minimal
face.

2. Let F be a nonempty minimal face of P . By definition, F = {x ∈
P |A′x = b′} where A′x ≤ b′ is a subsystem of Ax ≤ b, and the remain-
ing inequalities are Âx ≤ b̂, i.e., F := {x|A′x = b′, Âx ≤ b̂}. W.L.O.G
we may remove any inequality from Âx ≤ b̂ that is redundant. Since
F cannot have any facet, we conclude that Âx ≤ b̂ is empty.

Finally, we end with a result which is a sophisticated version of Decom-
position Theorem 3.4.

Theorem 3.5. Let P = {x ∈ Rn|Ax ≤ b} be a nonempty polyhedron,
described by rational data. Then P = conv{v1, . . . , vp}+ cone{r1, . . . , rq}+
lin.hull{z1, . . . , zt} , where

1. P has p minimal faces and vi is arbirary point from the ith minimal
face.

2. rec.cone(P ) has q mininal proper faces2 and ri is an arbitrary vector
from F i \ lin.space(P ), where F i is the ith minimal proper face of
rec.cone(P )

3. zi’s generate lin.space(P ).

Morover, if A and b are rational , then v’s, r’s, and z’s can be selected to
be rational.

3.5 Suggested exercises

1. Consider the polytope that is the convex hull of the points {i, i2}
for i = 0, 1, . . . , 10. Describe the facet-defining inequalities of this
polytope.

2A face of dimension one more that the dimension of the lin.space
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2. Given n distinct sets such that E1 ⊂ E2 ⊂ E3 ⊂ . . . En in R100, how
large can n be if

(a) each Ei is a linear subspace

(b) each Ei is a an affine subspace

(c) each Ei is a convex set

3. Describe the extreme points (minimal faces )and extreme rays (mini-
mal proper faces of recession cone) of the following sets:

(a) X = {x ∈ Rn |x ≥ 0,
∑n

i=1 aixi = 1} where a1 < a2 < a3 < · · · <
an.

(b) X = {x ∈ R3 |x ≥ 0, x1 + x2 − x3 ≥ 1}
(c) X = {x ∈ R4 |x ≥ 0,−x1 = x2 − 2x3 ≤ 1,−2x1 − x3 + 2x4 ≤ 2

4. Let Sn be the set of n! vectors obtained by permuting the entries of
the vector (1, 2, . . . , n) and Pn be the convex hull of Sn. For example
for n = 3: S3 := {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}

(a) Prove that dim(Pn) = n− 1

(b) Given S, a nonempty, proper subset of {1, 2, . . . , n}, prove that
the inequality ∑

j∈S
xj ≥

|S||S|+ 1

2

is a facet-defining inequality for Pn.

5. Construct the face-lattice for the polytope {x ∈ R3 |x ≥ 0, x1 + x2 +
x3 ≤ 1}.

6. In class we proved the following: Let P = {x ∈ Rn |Ax ≤ b} be a
polyhedron. Let F be a face of P . Then there exists a subsystem
A′x ≤ b′ of Ax ≤ b such that F = {x ∈ P |A′x = b′}. Now prove the
converse: Suppose there exists a subsystem A′x ≤ b′ of Ax ≤ b such
that F = {x ∈ P |A′x = b′} is non-empty. Prove that F is a face of
P .

7. In class we proved that if P ⊆ Rn is a polyhedron and F is a facet of
P , then dim(P ) = dim(F ) + 1. Now verify the converse: if P ⊆ Rn is
a polyhedron and F is a face such that dim(P ) = dim(F ) + 1, then F
is a facet.
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8. Let P be a non-empty polyhedron. Let F be any face of P . Prove the
lin.space(F ) = lin.space(P ).

9. Let P ⊆ Rn be a nonempty polytope. Let x0 be a vertex (0-dimensional
minimal face) of P . Let x1, . . . , xk be all the neighboring vertices of
x0, i.e., all the one dimensional faces of P containing x0 are of the form
conv{x0, xt} for t ∈ {1, . . . , k}. Prove that if x ∈ P , then there exists
λt ≥ 0 for t ∈ {1, . . . , k} such that x =

∑k
t=1 λt(x

t − x0) + x0.

10. Let P ⊆ Rn be a non-empty polytope. Let vert(P ) be the set of
vertices of P . Let X ⊆ vert(P ). Define P (X) := conv (vert(P ) \X).
The graph of the polytope P is a graph GP with nodes corresponding
to vert(P ) such that two nodes are adjacent in GP if and only if the
corresponding vertices are adjacent in P (i.e. the two vertices are
contained in a one-dimensional face of P ).

Let X ⊆ vert(P ) and let (X1, . . . , Xm) be a partition of X such that
Xi and Xj are independent in GP , i.e. there is no edge connecting Xi

to Xj for all 1 ≤ i < j ≤ m. Then show that

P (X) =
m⋂
i=1

P (Xi).

11. Let P ⊆ Rn be a polytope (bounded polyhedron). Define a vertex of
P as follows: if there exists some c ∈ Rn such that cT v < cTx for all
x ∈ P \ {v}, i.e., it is a 0 dimensional face of P . For a given vertex
v, define the set Sv = {c ∈ Rn | cT v < cTx for all x ∈ P \ {v}}. Prove
that the dimension of the set Sv is n.

12. Let M(c) be the set of optimal solutions when maximizing c>x over
P . The following holds: for every c ∈ Rn such that M(c) 6= P , M(c)
is completely contained in exactly one proper face of Q.

Prove that P = Q.

13. Let P i := {x | Aix ≤ bi} i ∈ {1, 2}. Suppose that rec.cone(P 1) =
rec.cone(P 2). Prove that convex hull of ∪2

i=1P
i is given by

{x ∈ Rn |x = x1 + x2, A1x1 ≤ b1λ, A2x2 ≤ b2(1− λ), 0 ≤ λ ≤ 1}.



Chapter 4

Fundamental Theorem of
Integer Programming

4.1 Fundamental Theorem of Integer Programming

Theorem 4.1. Let P := {x ∈ Rn|Ax ≤ b} be a nonempty rational polyhe-
dron, then:
(i) conv(P ∩ Zn) is a rational polyhedron
(ii) If P ∩ Zn 6= ∅, then rec.cone(conv(P ∩ Zn)) = rec.cone(P )

Proof. If P ∩Zn = ∅, the statement trivially holds. Now suppose P ∩Zn 6= ∅.
(1) Since P is a rational polyhedron. By the previous proposition, we have
P = conv(v1, . . . , vp) + cone(r1, . . . , rq), where vi ∈ Qn and rj ∈ Zn.
Since

P ⊇ T := {x ∈ Rn|x =
∑

λiv
i +
∑

θjr
j , λi ≥ 0,

∑
λi = 1, θj ≥ 0, θj ≤ 1}

Observe that T is rational and bounded.
For any x̄ ∈ Zn, define Tx̄ = {x ∈ T |x = x̄}. Then T ∩Zn = ∪x̄∈ZnTx̄. Note
that Tx̄ is a rational polytope (T with one more rational constraint), which
can be represented by convex combinations of rational vectors v1

x̄, . . . , v
kx̄
x̄ .

It follows that conv(T ∩ Zn) can be represented by convex combinations of
v1
x̄, . . . , v

kx̄
x̄ , x̄ ∈ Zn and thus is a rational polytope.

We then CLAIM that P ∩ Zn = (T ∩ Zn) +
∑
µjr

j , where µj ∈ Zn+.

Proof. ⊇: by definition
⊆: for any x ∈ P ∩ Zn, x =

∑
λiv

i +
∑
θjr

j =
∑
λiv

i +
∑

(θj − bθjc)rj +

79
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∑
bθjcrj .

Since x ∈ Zn and
∑
bθjcrj ∈ Zn, we have

∑
λiv

i+
∑

(θj−bθjc)rj ∈ Zn. On
the other hand, since 0 ≤ θj−bθjc ≤ 1, we have

∑
λiv

i+
∑

(θj−bθjc)rj ∈ T .
Thus

∑
λiv

i +
∑

(θj − bθjc)rj ∈ T ∩ Zn.
Note that bθjc ∈ Zn+, we conclude that P ∩ Zn ⊆ (T ∩ Zn) +

∑
µjr

j

It is well known that for two sets A,B, conv(A+B) = conv(A)+conv(B). It
follows that conv(P ∩Zn) = conv(T ∩Zn) + cone{r1, . . . , rq}, thus conv(P ∩
Zn) is a rational polyhedron
(2) If P ∩ Zn 6= ∅, from the proof of part (1), we have rec.cone(conv(P ∩
Zn)) = cone{r1, . . . , rq} = rec.cone(P )

4.2 Integral Polyhedron

Motivated by the fundamental Theorem, we make the following definition.

Definition 4.1 (Integral Polyhedron). We say that a polyhedron P ⊆ Rn
is an integral polyhedron if conv(P ∩ Zn) = P .

Here is an important result regarding integral polyhedra.

Proposition 4.1. A rational polyhedron P is integral iff every minimal face
contains an integer point.

Proof. Suppose P is integral. Let F be a minimal face of P, and assume
for the sake of obtain an contradiction F contains no integer points. Then
P \F is a convex set containing P ∩Zn, but it is a strict subset of P , which
is therefore not the convex hull of P ∩ Zn.

Conversely, if P I = ∅, the result holds trivially so assume P 6= P I 6= ∅.
Suppose, we have P = conv{u1, . . . , up} + cone{r1, . . . , rk} and u1 6= P I .
Therefore,

(u1 + lin.space(P I)) ∩ P I = ∅.

By the Fundamental Theorem of Integer programming, the recession cones
of P and P I are the same, and therefore lin.space(P I) = lin.space(P ).
Thus, we have that (u1 + lin.space(P )) ∩ P I = ∅. However, note that
(u1 + lin.space(P )) is a minimal face of P , completing the proof.
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4.3 A simple example

Let the graph G = (V,E) be a complete graph. Consider the standard
formulation of the stable set on this graph.

xi + xj ≤ 1 ∀ (i, j) ∈ E
xi ≥ 0 ∀ i ∈ V

}
(P ) (4.1)

x ∈ Z|V |. (4.2)

Dimension on P I : Observe that the following points belong to P I :
(0, . . . , 0), (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 0, 1). Clearly, these points
n+ 1 are affinely independent. Thus, dim(P I) = n.

A new valid inequality for P I : Consider the inequality,

n∑
i=1

xi ≤ 1. (4.3)

This inequality is valid for P I , since the graph is complete and therefore no
more than one vertex can be selected. Observe that this inequality is not
implied by the inequalities describing P . Thus P is not integral.

The inequality (4.3) is facet-defining for P I : Examine that the points
(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 0, 1) belong to P I , satisfy the inequality
(4.3) at equality, and are affinely independent. Thus the dimension of the
face defined by the inequality (4.3) is n− 1, i.e. facet-defining. Note that if
P I is not full-dimensional, then more care should be taken in order to prove
an inequality is facet-defining, as discussed in class.

Integer hull: Consider the set:

Q = {x ∈ Rn |xi ≥ 0 ∀i ∈ [n],

n∑
i=1

xi ≤ 1}.

We claim that Q = P I .

Proof. Observe first that Q ∩ Zn = P ∩ Zn. Therefore to complete the
proof we have to show that Q is integral. Note now that the extreme points
(minimal faces) of Q are (0, . . . , 0), (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 0, 1)
and thus integral. Therefore, by Proposition 4.1, Q is integral.
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4.4 Proving a Polyhedron is integral

Clearly, given an IP, we would like to obtain its integral hull, since optimizing
a linear function on the integer hull is a linear program (thanks to the
Fundamental Theorem) and it gives you the exact same optimal objective
function value as the original IP. Unfortunately, in most cases, finding the
integer hull is challenging. However in special cases, we are ale to prove that
we have the exact integer hull. Proving such a result usually involves proving
that some polyhedron is integral. Many different methods have been used
to prove this. Here are some examples of techniques for showing a rational
polyhedron P is integral (or P = conv(X) where X = P ∩ Zn):

1. Show that all extreme points of P are integral. The contrapositive is:

2. Show that all points of P with x 6∈ Zn are not extreme points of P .

3. Show that all facets/faces of P have integral extreme points.

4. Show that the linear program: min{c>x |x ∈ P} has an optimal solu-
tion in X for all c ∈ Rn. One way to do this is:

5. Show that there exists a point x∗ ∈ X and point u feasible in the dual
of the linear programming relaxation with c>x∗ = (u)>b. (Why does
this work?) Another is:

6. Show that the matrix corresponding to the left-hand-side of constraint
defining P is totally unimodular and the right-hand-ide is an integral
vector. See detail in Chapter 5.

7. Assuming b ∈ Zm, show that, for all c ∈ Zn for which the optimal
dual objectuve function is bounded, it is also integer valued. This is
related to the Totally dual integral polyhedron. See Chapter 5.

8. Show that dim(conv(X)) = dim(P ), and that if π>x ≥ π0 is a facet-
defining inequality for conv(X), then π>x ≥ π0 must be identical to
one of the inequalities defining P .

9. Show that dim(conv(X)) = dim(P ), and that for all c ∈ Rn for which
M(c) 6= X and the optimum value is finite, M(c) ⊆ {x |α>c = β} for
some inequality α>x ≥ β defining P , where P ∩ {x |α>c = β} is a
proper face of P . Here M(c) = arg min{c>x : x ∈ X} is the set of
optimal solutions for a given cost vector c ∈ Rn. (See Problem 11 in
Chapter 3).
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10. Another possibility is to show Q is a mixed integer set such that (1)
X = projx(Q), (2) conv(Q) is integral and projx(conv(Q)) = P .

4.5 PORTA

PORTA is an useful code to determine facet-defining inequalities experimen-
tally.

4.5.1 Downloads

For Windows and Linux users Porta is available at “https://porta.zib.de/”.
Additionally the page contains links to other useful tools, such at cdd and
Normalize.

For Mac users the easiest way is likely to just compile the C code on your
machine. The source code for various versions are available on online, one
such can be found at this github link “https://github.com/denisrosset/porta”.

4.5.2 File Types

Porta makes use of two basic file types, the ”.ieq” file and the ”.poi” files.
The ”.ieq” file type corresponds to the outer description of a polyhedron
and ”.poi” files correspond to the inner description. While some functions
in Porta require a specific file type for input (fmel for example requires an
”.ieq” file), but the primary function traf accepts either file type.

.ieq file

The ”.ieq” file contains the outer description of the polyhedron. The basic
structure is as follows.
**************************
DIM = n (where n is the number of variables in your problem)
VALID
(a vector corresponding to a feasible point)
INEQUALITIES SECTION
(your constraints)
END

************************** Inequalities in Porta are written in the form
ai1x1 +/- ai2x2 .... +/- ainxn (==, <=, >=) bi, where the aij and bi are
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the data for your problem. Note that the data for your problem must be
rational.

.poi file

The ”.poi” file contains the inner description of your polyhedron. The basic
structure is as follows.
**************************
DIM = n (where n is the number of variables in your problem)
CONV SECTION
(rational vectors corresponding to your polyhedron’s extreme points)
CONE SECTION
(rational vectors corresponding to your polyhedron’s extreme rays)
END

**************************

4.5.3 traf

The primary function in Porta is traf. The traf function converts from a
polyhedra’s outer description to its inner description and its inner descrip-
tion to its outer description. In Porta terms, traf converts an ”.ieq” file to
its corresponding ”.poi” file and a ”.poi” file to its correspdonding ”.ieq”
file. To use traf, you must call the traf program and provide it an ”.ieq” or
”.poi” file as an argument. For example, running traf from a linux command
line looks like, ”./traf file.(ieq/poi)”. After being ran, traf outputs a new
file named after your input file with the appropriate extension appended to
the end. For example, if you ran traf on a file called ”file.ieq” traf would
output a file called ”file.ieq.poi”.

Example

Consider the stable set problem on the graph below.

3 4

1 2
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The extreme points we are interested in are

(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 0, 1)

The ”.poi” file representing our polytope looks like

DIM = 4
CONV SECTION
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 1
END

Calling traf on this file will then output the following ”.ieq” file contain-
ing the outer description of our integral stable set polytope.

DIM = 4
VALID
1 0 0 1
INEQUALITIES SECTION
-x1 <= 0
-x2 <= 0
-x3 <= 0
-x4 <= 0
+x2+x3+x4 <= 1
+x1+x2+x3 <= 1
END

4.5.4 fmel

Porta essentially works based on an implementation of Fourier-Motzkin pro-
jection. The fmel function can be used to project polyhedra into a lower
dimensional spaces. To do this you use the fmel function with an ”.ieq” file
as an input. The ”.ieq” file must contain an additional line denoting the
order in which variables are to be eliminated during the Fourier-Motzkin
procedure. For example, suppose you had a polyhedra with four variables,
if you wanted to eliminate the second and third of these you could add the
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following line to your ”.ieq” file.

ELIMINATION ORDER
0 1 2 0

Running fmel on the file would then produce a new ”.ieq” file without the
variables you selected for elimination.

4.6 Suggested exercises

1. Let m and n be positive integers. Let c ∈ Qn, b ∈ Qm and A ∈ Qm×n.
Suppose that the LP max{cTx |Ax ≤ b} is unbounded. Which of
the following outcomes of the IP problem max{cTx |Ax ≤ b, x ∈ Zn}
are possible: unbounded, infeasible, have optimal solutions. Provide
arguments for your answer.

2. Let n ≥ 3 and m ≥ 2 be two integers. The simple plant location
polytope is the convex hull of the points

n∑
j=1

xij = 1 ∀i = 1, . . . ,m

0 ≤ xij ≤ yj ≤ 1 ∀i = 1, . . . ,m, j = 1, . . . , n

xij ∈ {0, 1}, yj ∈ {0, 1}∀i = 1, . . . ,m, j = 1, . . . , n.

(a) Find the dimension of the simple plant location polytope.

(b) Show that xij ≥ 0 defines a facet of the simple plant location
polytope.

3. A set S is a called mixed integer representable if there exists rational
matrices A,B,C and rational vector d such that

S = {x ∈ Rn |Ax+By + Cz ≤ d, y ∈ Rp, z ∈ Zq}.

Prove that a set S is mixed integer representable iff there exists rational
polytopes P1, . . . , Pk ∈ Rn and integral vectors r1, . . . , rt such that

S =

k⋃
i=1

Pi +

{
t∑
i=1

riui |ui ∈ Z+

}
.
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4. Prove the Fundamental theorem of integer programming for the case
of mixed integer linear program, i.e. if P ⊆ Rn is a rational polyedron
then

• conv(P ∩ (Zn1 × Rn2) is a polyhedron where n1 + n2 = n.

• If conv(P ∩ (Zn1 × Rn2) 6= ∅,

rec.cone (conv(P ∩ (Zn1 × Rn2)) = rec.cone(P ).

5. Let (a1, . . . , an) ∈ Zn+ \ {0}, b ∈ R and S = {x ∈ Zn |
∑n

j=1 ajxj ≤ b}.
Note that x is allowed to be general integer and not restricted to only
non-negative integers. Prove that

conv(S) =

x ∈ Rn
∣∣∣∣∣∣
n∑
j=1

aj
k
xj ≤

⌊
b

k

⌋ ,

where k is the greatest common divisor of a1, . . . , an.

6. Let S = {x ∈ {0, 1}n, y ∈ R+ | y + aixi ≥ ai ∀i ∈ {1, . . . , n}} where
a1 > a2 > · · · > an > 0. Prove that

y + (a1 − a2)x1 + (a2 − a3)x2 + · · ·+ (an−1 − an)xn−1 + anxn ≥ a1

is valid and facet-defining for conv(S).

7. Consider the set S = {(x, y) ∈ Rn × Z :
∑n

j=1 xj ≤ ny, 0 ≤ xj ≤
1 ∀j, 0 ≤ y ≤ 1}. Prove that conv(S) = {(x, y) ∈ Rn × R : 0 ≤ xj ≤
y ∀j, y ≤ 1}.

8. We have n binary variables xi for i ∈ [n], and we are interested in all
products of distinct binary variables, yij = xixj where i 6= j. Then it
is easy to ‘linearize’ this product as

yij ≥ 0 ∀i, j ∈ [n], i 6= j (4.4)

yij ≤ xi ∀i, j ∈ [n], i 6= j (4.5)

yij ≤ xj ∀i, j ∈ [n], i 6= j (4.6)

yij ≥ xi + xj − 1 ∀i, j ∈ [n], i 6= j (4.7)

x ∈ Zn, y ∈ Zn(n−1)/2. (4.8)

Thus we arrive at the following IP set: S:={
(x, y) ∈ Rn × Rn(n−1)/2 | (x, y) satisfies (4.4), (4.5), (4.6), (4.7), (4.8)

}
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• Show that (4.4), (4.5), (4.6), (4.7) imply that 0 ≤ xi ≤ 1 for all
i ∈ [n], and yij ≤ 1 ∀i, j ∈ [n], i 6= j.

• What is the dimension of conv(S)?

• Show that yij ≤ xi is a facet-defining inequality of conv(S) ∀i, j ∈
[n], i 6= j.

• Show that for n = 2, conv(S) is given by the inequalities (4.4),
(4.5), (4.6), (4.7).

• Show that for n = 3, the following inequality is valid:

x1 + x2 + x3 − y12 − y13 − y23 ≤ 1.

• Prove that above inequality is a facet-defining inequality for the
case of n = 3.

9. Given an undirected graph G = (V,E) with n vertices, V = {1, . . . , n},
a dominating set in G is a set of vertices D such that every vertex in
the graph is either in D or is adjacent to some vertex in D, i.e. for
every vertex i ∈ V either i ∈ D or (i, j) ∈ E for some j ∈ D. The
dominating set polytope is conv(Q) where

Q = {x ∈ {0, 1}n |
∑
j∈∆(i)

xj ≥ 1 ∀i ∈ V },

and where ∆(i) = {i} ∪ {j ∈ V | (i, j) ∈ E} is the set of vertices
adjacent to vertex i together with i itself.

(a) (15) Assume thatG contains no isolated edges. Prove that conv(Q)
is full-dimensional.

(b) (15) Suppose that G is a wheel graph, i.e., G = (V,E) where
V = {1, . . . , n, n+ 1} (where n ≥ 4) and

E = {(i, i+ 1) | i ∈ {1, . . . , n− 1}} ∪ (n, 1) ∪ {(i, n+ 1) | i ∈ {1, . . . , n}}.

Show that the following is a valid inequality for the dominating
set polytope for the wheel graph:

n∑
i=1

xi +
⌈n

3

⌉
xn+1 ≥

⌈n
3

⌉
(c) (15) Show that above inequality is facet-defining for the domi-

nating set polytope for the wheel graph.
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10. Let G = (V,E) be a simple graph. Remember that a stable set is a
subset V ′ of the vertices V such that for all u, v ∈ V ′, (u, v) /∈ E.
Therefore the set of all stable sets may be represented as:

xu + xv ≤ 1 ∀(u, v) ∈ E
0 ≤ xu ≤ 1 ∀u ∈ V
x ∈ Z|V |.

(4.9)

(a) Consider the graph C5 (cycle on 5 vertices), i.e. V = {v1, v2, v3, v4, v5}
and

E = {(v1, v2), (v2, v3), (v3, v4), (v4, v5), (v5, v1)}.

Show that LP relaxation of (4.9) for the graph C5 is not integral.

(b) Prove that the inequality

5∑
i=1

xi ≤ 2, (4.10)

is a facet-defining inequality of the convex hull of (4.9) for the
graph C5.

11. In production of electricity, the resources are generators which produce
electricity in various time periods and we are planning for T time
periods. A generator has a minimum up time of U i.e., if a generator
is turned on in time period t, then it must remain on for the next U−1
time periods. One may model such constraints as:

xt − xt−1 ≤ xτ for all 2 ≤ t < τ ≤ min{t+ U − 1, T}
xt ∈ {0, 1} for all 1 ≤ t ≤ T

We are interested polyhedral description of the convex hull of the
above set (call this set S). For a nonnegative integer k, consider a
non-empty set of 2k + 1 indices (denoted as {φ(1), φ(2), . . . , φ(k +
1), ψ(1), ψ(2), . . . , ψ(k)) from the set {1. . . . , T} such that

(a) φ(1) < ψ(1) < φ(2) < ψ(2) < · · · < φ(k) < ψ(k) < φ(k + 1)

(b) φ(k + 1)− φ(1) ≤ U

Associate with these indices the following inequalities:

−
k+1∑
j=1

xσ(j) +
k∑
j=1

xψ(j) ≤ 0
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Prove that these inequalities are valid and are facet-defining for the
convex hull of S.

12. Let T ⊆ {0, 1}n. We say that T satisfies the edge property if for all
c ∈ Rn such that min{ctz | z ∈ T} has at least two optimal solutions, z1

and z2 where
∑n

j=1 z
1
j = k1,

∑n
j=1 z

2
j = k2 and k1 ≤ k2−2, then there

is an optimal solution z3 such that
∑n

j=1 z
3
j = k3 and k1 < k3 < k2.

(a) If T satisfies the edge property, prove that

conv

T ∩ {z ∈ {0, 1}n | n∑
j=1

zj ≤ k}

 = conv(T )∩{z ∈ [0, 1]n|
n∑
j=1

zj ≤ k}

for any k ∈ {1, . . . , n}.
(b) Prove that the set of matchings in a graph G = (V,E), i.e.,
{x ∈ {0, 1}|E| |

∑
e∈δ(v) xe ≤ 1∀e ∈ E} satisfies the edge property.

13. (a) Let P := {(x, y) ∈ [0, 1]p × Rq |Ax+By ≤ d} be a non-empty in-
tegral polytope, that is for any vertex of P , it’s x-component is a
0− 1 vector and it’s y-component is a vector of general integers.
Let l ≤ p. Suppose there is a vertex of P such the first l compo-
nents of x is the vector x̄ ∈ {0, 1}l. Prove that the polytope Q is
integral where Q is defined as:

Q = P ∩ {(x, y) ∈ [0, 1]p × Rq |xj = x̄j ∀j ∈ {1, . . . , l}} .

(b) Would the same result hold if x-component of P is general integer
instead of being 0− 1 vector?

14. We will show that the decision version of IP (Given A ∈ Qm×n and
b ∈ Qm, is the set {x|Ax ≤ b, x ∈ Zn} non-empty?) is in NP. For
simplicity assume that Ax ≤ b is pointed. The certificate will be a
feasible solution.

Hint: You can re-use the proof of the fundamental theorem of IP.
Remember the set T = {x|x = conv{v1, . . . , vp} +

∑q
j=1 θjr

j , 1 ≥
θj ≥ 0,∀j ∈ {1, . . . , q}} where the polyhedron P := {x|Ax ≤ b} =
conv{v1, . . . , vp}+ cone{r1, . . . , rq} where rj are scaled to be integral.
Our proof of the fundamental theorem already shows that {x|Ax ≤
b, x ∈ Zn} is non-empty iff T ∩ Zn is non-empty. All you need to
show is the size of the integer feasible solutions in T is bounded by a
polynomial function of the size of the input. Assume/use the solution
of Problem 1 in HW 2.



Chapter 5

Theory of Totally
Unimodular Matrices and
Totally Dual Integral
Systems

5.1 Totally Unimodular Matrices and Their Ap-
plications in IP

Definition 5.1 (Totally Unimodular (TU)). An m×n integral matrix A is
called totally unimodular if every square sub-matrix of A has determinant
+1, −1 or 0.

Theorem 5.1. If a matrix A is TU, then a non-empty polyhedron P :=
{x|Ax ≤ b} is integral for all integral b.

Proof. In the view of Proposition 4.1, we only need to show that, for any
integral b, every minimal face of P contains an integral point. Recall that
any minimal face F of P has a representation

F := {x|A′x = b′},

where {A′x = b′} is a subsystem of {Ax = b}. Without loss of generality, we
can assume that the matrix A′ has linearly independent rows. We denote
A = [B, B̄], where B is a full rank (hence invertible) square matrix. Rewrite
A′x = b′ as

BxB + B̄xB̄ = b,

91
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where x = (xB, xB̄). Taking xB̄ = 0, we have x = (B−1b, 0) as a point
contained in the face F . Since A is TU, we know that det(B−1) = ±1.
Given that b is integral, B−1b is integral and thus x is integral. Thus, we
have established that any face F of P contains an integral point.

Is it true that whenever we have an integral polyhedral, the left-hand-
side is TU? This is not true as the next example shows

Example 5.1. Consider the polyhedron P = {x ∈ R3 |x1+x2 ≤ 2, x1+x3 ≤
2, x2 + x3 ≤ 2, x ≥ 0}. The extreme points of this polyhedron are: (0, 0, 0),
(2, 0, 0), (0, 2, 0), (0, 0, 2), and (1, 1, 1), therefore the polytope is integral. On
the other hand the constrint matrix is not TU, since

dim

 1 1 0
0 1 1
1 0 1

 = 2.

5.1.1 Hoffman and Kruskal Theorem

Although integral polyhedron doen not imply the left-hand-side is TU, the
following result, due to Hoffman and Kruskal, is true.

Theorem 5.2. Let A be an integral matrix, then P (b) = {x |Ax ≤ b, x ≥ 0}
is integral for all integral b (when P (b) 6= ∅) if and only if A is TU.

Before giving the proof of Theorem 5.2, let us first introduce the concept
of “unimodular matrix” and several useful lemmas.

Definition 5.2 (Unimodular). A m× n matrix A is called unimodular if

1. A is integral and has full row rank.

2. Every m×m square submatrix of A has determinant +1, −1 or 0.

Lemma 5.1. Let B be an integral invertible square matrix. If B−1t is
integral for all integral vector t, then | det(B)| = 1.

Proof. Let t be the i-th elementary vector ei, i.e., all the components are zero
except that the i-th component is equal to 1. We know that B−1ei results
in the i-th column of B−1. Therefore, the i-th column of B−1 is integral,
and thus the matrix B−1 is integral. Since computing the determinant of
a matrix only involves “addition” and “multiplication”, the two arithmetic
operations, we can see that det(B) and det(B−1) are integral. Since

det(B) · det(B−1) = 1,

we have det(B) = ±1 and |det(B)| = 1.
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Lemma 5.2. Let A be an integral matrix with full row rank, then Q(b) :=
{x ∈ Rn |Ax = b, x ≥ 0} is integral for all integral b if and only if A is
unimodular.

Proof. Assume A is m × n matrix. “if”: trivial. In fact, for each minimal
face of P is of the form Ax = b, xi = 0, ∀i ∈ N (for some N ⊆ [n] where
|N | = n−m) contains an integral point given that the face is nonempty.

“only if”: Let B be a non-singular m ×m square sub-matrix of A. In
view of Lemma 5.1, we only need to show that B−1t is integral for all integral
t. Let t ∈ Zm, we can take some y ∈ Zm+ such that

z := y +B−1t ≥ 0.

We further let

b := bz = B(y +B−1t) = By + t.

Note that both By and t are integral, so we know that B is also integral.
Furthermore, since z is nonnegative, we know that by construction (z, 0) =
(B−1b, 0) is a vertex in P . Given that Q(b) is integral, the vertex (z, 0) is
integral. Hence, z = y+B−1t is integral. Since y is integral, we know B−1t
is integral.

Lemma 5.3. A matrix A ∈ Zm×n is totally unimodular if and only if [A, I]
is unimodular.

Proof. “⇒” Let A be a TU matrix. Notice that [A, I] is clearly full row rank
and integral. Let’s consider a m×m submatrix B of [A, I]. If all columns be-
long to A, by the total unimodularity A, we know det(B) ∈ {0,±1}. If there
is at least one column in B belonging to I, say ei, then |det(B)| = |det(B′)|,
where B′ is obtained by removing the column of ei and ith row. We can
continuously get a smaller submatrix until it is a submatrix of A. By the
total unimodularity of A, we know det(B) ∈ {0,±1}. Therefore, [A, I] is
unimodular.

“⇐” Pick any submatrix A′ of A, with row indices {i1, ..., it} ⊆ {1, ...,m}
and column indices {j1, ..., jt} ⊆ {1, ..., n}. Let {it+1, ..., im} = {1, ...,m} \
{i1, ..., it}. Consider a matrix Y = [Aj1 , ...,Ajt , eit+1 , ..., eim ], this is an
m×m submatrix of [A, I]. By definition of determinant, we have |det(A′)| =
|det(Y)| ∈ {0, 1}. Therefore, A is totally unimodular.

Proof. of Theorem 5.2 First, by Lemma and Proposition above, we have “A
is totally unimodular” ⇔ “[A, I] is unimodular” ⇔ “Q(b) = {x ∈ Rn+,y ∈
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Rm+ : Ax + y = b} is integral for all integral vectors b ∈ Zm for which
Q(b) 6= ∅.”

Next, we only need to prove “Q(b) is integral” ⇔ “P (b) is integral”. If
Q(b) is integral, for any extreme point x in P (b), (x,b−Ax) is an extreme
point of Q(b) , and thus x is integral. Then we know P (b) is integral.
If P (b) is integral, for any extreme point (x,y) in Q(b), x is an extreme
point of P (b), and thus (x,y) is integral. (Since x is active at n linearly
independent constraints in Ax ≤ b.) Therefore, we complete the proof.

5.1.2 Testing for TU

It turns out that given a mtrix it can be checked in polynomial time whether
a matrix is TU or not. We do not present this result here. What we present
is Theorem 5.3 which is quite useful to verify TU property, although it
does not directly lead to a polynomial-time algorithm. We begin with a
preliminary Lemma.

Lemma 5.4. (i) A matrix A ∈ Zm×n is TU iff

[
A
I

]
is TU.

(ii) A matrix A ∈ Zm×n is TU iff

[
A
−A

]
is TU.

(iii) A matrix A ∈ Zm×n is TU iff

 A
−A
I

 is TU.

(iv) A matrix A ∈ Zm×n is TU iff


A
−A
I
−I

 is TU.

Proof. (i) Similar to Lemma 1.

(ii) If

[
A
−A

]
is TU, it is clear that A is TU. On the other hand, if A is

TU, let’s consider a submatrix A′ of

[
A
−A

]
. If A′ contains the same row

from A and −A, then det(A′) = 0. Otherwise A′ is the same as A with

row replacement. And thus |det(A′)| = |det(A)|. Therefore,

[
A
−A

]
is TU.

(iii) This follows from (i) and (ii).
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(iv) This follows from (i), (ii) and (iii).

Theorem 5.3. A matrix A ∈ Zm×n is totally unimodular if and only if for
every J ⊆ {1, . . . , n} there is a partition J = J1∪J2, (J1∩J2 = ∅) such that,∑

j∈J1

Aij −
∑
j∈J2

Aij ∈ {−1, 0, 1}

for all i = 1, ...,m. Note that Ji can be empty.

Proof. “⇒” Let A be totally unimodular and consider a collection J of
columns of A. Let be the characteristic vector of J , i.e., dj = 1 when j ∈ J ,
dj = 0 otherwise. Consider the polytope,

P = {x ∈ Rn |0 ≤ x ≤ d,

⌊
1

2
Ad

⌋
≤ Ax ≤

⌈
1

2
Ad

⌉
}.

It is clear that P is nonempty (since d/2 ∈ P ) and bounded, thus there
exists at least one extreme point, x0. By Lemma 2 and Theorem 1, we
know P is integral, thus x0 ∈ {0, 1}n. Let y = d − 2x. If di = 1, then
di − 2xi is either −1 or 1. If di = 0, then di − 2xi = 0 (since xi ≤ di).
Therefore, y defines a partition of columns in J , i.e., J1 = {j : yj = 1} and
J2 = {j : yj = −1}. We show next that (Ay)i ∈ {0,±1} for all i = 1, ...,m.
If (Ad)i = 2k + 1, then k ≤ (Ax)i ≤ k + 1. Thus

(Ay)i = (Ad)i − 2(Ax)i =

{
1, (Ax)i = k,
−1, (Ax)i = k + 1,

If (Ad)i = 2k, then it is clear that (Ay)i = 0. Therefore, we have proven
that for all i = 1, ...,m,∑

j∈J1

Aij −
∑
j∈J2

Aij ∈ {−1, 0, 1}

“⇐” The proof will be performed by induction on the size of square subma-
trices of A.
Start with the base case and consider |J = {j}| = 1.

∑
j∈J1

Aij−
∑

j∈J2
Aij ∈

{−1, 0, 1} yields Aij ∈ {0,±1}.
Now assume for every (k−1)× (k−1) submatrix A′ we have that det(A′) ∈
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{0,±1}. Now consider a k × k submatrix B. Using Cramer’s rule, we have
that

(B−1)ij =
det(B1, B2, . . . , Bi−1ejB

i+1, . . . Bk)

det(B)
,

where Bl is the lth column of B and ej is the unit vector with zeros in every
component except j. Thus we have that

B−1 =
B∗

det(B)

where B∗ ∈ {−1, 0,+1}k×k. Let y be the forst column of B∗. Then we have
By = [det(B), 0, ..., 0]>. Let J := {j|yj 6= 0}.

Claim 1. |j ∈ J |Bij 6= 0| is even for all i ≥ 2.
Proof

∑
j∈J Bijyj = 0,∀i ≥ 2 The only possibility that we get 0 is to have

the same number of 1’s and -1’s. Thus |j ∈ J |Bij 6= 0| is even for all i ≥ 2.

According to the assumption, there exists a partition J1, J2 of J , such
that

∑
j∈J1

Bij −
∑

j∈J2
Bij ∈ {−1, 0, 1}. By Claim 1, for i ≥ 2, we further

have
∑

j∈J1
Bij −

∑
j∈J2

Bij = 0. Let’s consider z ∈ {0,±1}k, such that

zj =


0, j /∈ J,
1, j ∈ J1,
−1, j ∈ J2,

Observe that Bz 6= 0, since z 6= 0 and B is non-singular. So we have∑
j∈J1

Bij −
∑

j∈J2
Bij = ±1 for i = 1, i.e., Bz = [±1, 0, ..., 0]>. Because B

is invertible, comparing By = [det(B), 0, ..., 0]>, we know y is a scaling of z.
On the other hand, we know y, z ∈ {0,±1}k. So we have |det(B)| = 1

This property is based on columns; one can also prove such a statement
with rows.

An interval matrix is a 0-1 matrix where all the 1’s appear in con-
secutive columns in each row. Then for any collection J of columns, let
J1 be the odd columns, and J2 be the even columns, it is clear that the
characterization in Theorem 2 is satisfied. Hence, any interval matrix is
TU.

The node-edge incidence matrix of a bipartite graph is also totally
unimodular. This follows from the above characterization of TU matrices:
Let A be the node-edge incidence matrix of a bipartite graph G(V1;V2).
Given an subset of rows I, partition the rows into two set I1 and I2 where



5.2. TOTALLY DUAL INTEGRAL 97

I1 corresponds to nodes in V1 and I2 corresponds to nodes in V2. Then for
column j, we have that

∑
j∈I1 Aij ≤ 1 and

∑
j∈I2 Aij ≤ 1 completing the

proof.

5.2 Totally Dual Integral

We begin with some preliminary results.

Theorem 5.4 (Integer Farkas Lemma). Let A ∈ Qm×n and b ∈ Qm. Then
{x |Ax = b} ∩ Zn = ∅ iff there exists y ∈ Qm such that y>A ∈ Z1×n and
y>b 6∈ Z.

Proposition 5.1. Let
∑
aixi = bi, ai and bi are integers, and gcd(ai)=1.

Then there exists x̂ ∈ Zn such that a>x̂ = b.

Proposition 5.2. Let P := {x ∈ Rn | Ax ≤ b} be a rational polyhedron.
Then P is integral, if every rational supporting hyperplane of P contains
integer points.

Proof. P is integral → every face of P contains an integer point, which
implies that every rational supporting hyperplane of P contains an integer
point.

For the other direction, assume by contradiction that every rational sup-
porting hyperplane of P contains an integer point, but P is not integral.
Then there exists a minimal face F := {x |A′x = b′} such that F ∩ Zn = ∅
where A′x ≤ b′ is a subsystem of Ax ≤ b. By Theorem 5.4 this implies there
exists y ∈ Qm′ such that

y>A′ ∈ Zn, y>b′ 6∈ Z.

For any such y, we can find z ∈ Zm′ such that

w := y + z ≥ 0,

c := w>A′ ∈ Zn,
δ := w>b′ 6∈ Z.

Now consider the equality c>x = δ. It is a (rational) supporting hyperplane
of P since A′x ≤ b′ ∀x ∈ P , w ≥ 0, this implies c>x ≤ δ is a valid inequality
for P . Moreover, F 6= ∅, implies {x | c>x = δ} ∩ P = ∅. However, it does
not contain an integer point since c ∈ Zn and δ 6∈ Z. This is the required
contradiction.
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Proposition 5.3. Let P := {x ∈ Rn | Ax ≤ b} be a rational polyhedron.
Define z(c) = max c>x such that x ∈ P . Then for any c ∈ Zn such that
z(c) <∞, z(c) is integral if and only if P is integral.

Proof. (⇐) If P is integral, every minimal face contains an integer point.
Since the set of optimal solution contains a minimal face, optimization of
P will yield in integer objective function value. And for integral c, z(c) is
integral.

(⇒) We will prove P is integral by proving that every rational supporting
hyperplane contains an integer point (see Proposition 5.2). For any rational
supporting hyperplane, π>x = π0, we can scale π to an integral vector c
and gcd(c)=1, and let c = λπ. By property of supporting hyperplane and
hypothesis, we have λπ0 = z(c) is integral. Then we know there exists a
integer point x̂ that c>x̂ = z(c), and we finish our proof.

5.2.1 Totally Dual Integral System (TDI)

We first define the TDI, assume all data below (A, b, c) are rational, and
consider two problem

(P ) max c>x (D) min y>b

s.t. Ax ≤ b s.t. y>A = c

Definition 5.3. If for any c ∈ Zn, such that the LP (P) is finite, there
exists an integer optimal solution to the dual LP (D), then Ax ≤ b is said
to be TDI.

Corollary 5.1. If Ax ≤ b is TDI and b is integral, then {x | Ax ≤ b} is
integral.

Proof. Let c be an integral vector. Since Ax ≤ b is TDI, there exists an
integral optimal solution ŷ. Then for integral b, the objective value of (D),
e.g. vD is integral. By strong duality, c>x∗ = ŷ>b is integral, then by
Proposition 5.3, we claim that P is integral.

Observe that if A is TU, then the system Ax ≤ b is TDI. Thus the
notion of TDI generalizes the notion of TU systems. See Section 6.3.2 for
an example for a integral polytope that is a TDI system and b being integral.
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5.3 Suggested exercises

1. Provide a counterexample that demonstrates that the total unimodu-
larity of the matrices A and B is not sufficient to guarantee that the
composed matrix [A B] is totally unimodular.

2. Let S = {S1, . . . , Sm} be a family of subsets of a nonempty finite set
V := {1, . . . , n}, and let A denote the |S| × |V | incidence matrix of S,
i.e.

Aij =

{
1 if j ∈ Si
0 otherwise

The family S is laminar if, for all U, V ∈ S such that U ∩V 6= ∅, either
U ⊆ V or V ⊆ I. Show that A is Totally unimodular matrix.

3. Consider the problem:

max
∑

1≤i<j≤n
cijxixj −

n∑
i=1

dixi

s.t. x ∈ {0, 1}n

Assuming c is non-negative, show that the above problem can be solved
in polynomial-time.

4. Let G = (V,E) be a simple graph. Given a subset V ′ ⊆ V , G[V ′] =
(V ′, E′) denotes the graph where E′ ⊆ E is the subset of edges that
have both end points in V ′. A subset Ṽ ⊆ V is called perfectly match-
able if the graph G[V ′] contains a perfect matching. The perfectly
matchable subgraph polytope of G, denoted by P pm, is the convex
hull of of the incidence vectors of all subsets of V that are perfectly
matchable.

Suppose that G is a bipartite graph. Prove that

P pm =

x ∈ R|V | | ∃z ∈ R|E| s.t.
∑
e∈δ(v)

ze = xv ∀v ∈ V,

0 ≤ xv ≤ 1 ∀v ∈ V, ze ≥ 0 ∀e ∈ E} .

5. • Let A ∈ Zm×n. Suppose that for all b ∈ Zm and x̂ ∈ Zn+ and
for all integers k ≥ 1, with Ax̂ ≤ kb, there are integral vectors
x1, . . . , xk in {x ≥ 0 |Ax ≤ b} such that x̂ = xi + · · ·+ xk. Prove
that A is totally unimodular.
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• Now prove the converse: Let A be a totally unimodular matrix.
Let P := {x ∈ Rn |Ax ≤ b, x ≥ 0} and b ∈ Zm. Let 1

k · x̂ ∈ P
where k ∈ Z+ such that x̂ ∈ Zn. Prove that x̂ = x1 +x2 + · · ·+xk

where xi ∈ P ∩Zn for all i ∈ [k]. [Hint: Prove by induction on k.
For k ≥ 2, examine the polytope: {x | 0 ≤ x ≤ x̂, Ax̂− (k− 1)b ≤
Ax ≤ b}]

6. Show that TU property is preserved under the following operations:

(a) permuting rows and columns

(b) taking the transpose

(c) multiplying a row or column by −1

(d) pivoting, i.e., replacing

[
a c>

b D

]
by

[
−a ac>

ab D − abc>
]

(a is a

scalar)

7. Assuming [A a] and

[
b>

B

]
are TU matrices. Then show that

[
A ab>

0 B

]
is a TU matrix.

8. (a) Given scalars b > 0 and aj > 0 for j = 1, . . . , n, consider the
0, 1 knapsack set K := {x ∈ {0, 1}n |

∑n
i=1 aixi ≤ b}. A minimal

cover is a set C ⊆ {1, . . . , n} such that:

–
∑

j∈C aj > b

–
∑

j∈C\{i} aj ≤ b for all i ∈ C
Consider the set

K(C) := {x ∈ {0, 1}n |
∑
i∈C
≤ |C|−1 for every minimal cover Cfor K}.

Prove that K = K(C)

(b) Consider the feasible region of a 0− 1 knapsack of the following
form:

S :=

{
x ∈ {0, 1}n |

n∑
i=1

2i−1xi ≤ b

}
,

where 2n−1 ≤ b < 2n. Let the binary expansion of b be

b = 2i1−1 + 2i2−1 + · · ·+ 2ir−1 + 2n−1.

Let I := {i1, i2, . . . , ir, n}. For any j ∈ {1, . . . , n} \ I define the
set Ij := {j} ∪ {i ∈ I | i > j}.
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(a) Prove that Ij defines a minimal cover for all j ∈ {1, . . . , n}\I.

(b) Prove that the cover inequalities from the different Ijs put
together forms an integral polytope, i.e., show that the fol-
lowing polytope is integral:

S(C) :=

x ∈ [0, 1]n |
∑
t∈Ij

xt ≤ |Ij | − 1 ∀ j ∈ {1, . . . , n} \ I

 .

9. Construct an example of a TDI system Ax ≤ b, where A is not TU.

10. Show that for any rational linear system Ax ≤ b there is a positive
rational number q such that qAx ≤ qb is TDI.
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Chapter 6

Some Well-known Polytopes

6.1 Lot-sizing-problem

Recall the Lot-Sizing Problem introduced in the beginning of this class. At
each period a demand needs to be met (the demand is known in advance).
Periodically, the manufacturer can decide to produce or not to produce
items (the production involves fixed cost). A holding cost is also incurred
over the periods. The problem is to decide how many items to manufacture
in each time period to minimize the sum of the setup cost and inventory
cost. Consider the feasible set of the uncapacitated Lot-Sizing problem:

Xn = {(x, y, s) ∈ R3n : st−1 + xt = dt + st, t = 1, ..., n,

xt ≤ d1nyt, t = 1, ..., n,

xt, st ≥ 0, yt ∈ {0, 1}, t = 1, ..., n}

Where {1, 2, ..., n
}

is the time index, dt is the demand in period t (We use

notation dij :=
∑j

t=i dt), st is the amount in stock at the end of period t (We
assume s0 = sn = 0 in this lecture), xt is the amount produced in period t,
yt ∈ {0, 1} indicates whether a set-up cost must be incur in period t, which
must have the value 1 if xt > 0.
Notice that it is possible to eliminate the ”stock” variables st from the

103
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description of Xn, and giving X ⊆ R2n defined as follows:

X = {(x, y) ∈ R2n :
t∑

u=1

xu ≥ d1t, t = 1, ..., n, (6.1)

n∑
u=1

xu = d1n, (6.2)

xt ≤ d1nyt, t = 1, ..., n, (6.3)

xt ≥ 0, t = 1, ..., n, (6.4)

yt ∈ [0, 1], t = 1, ..., n, (6.5)

yt ∈ Z, t = 1, ..., n, } (6.6)

In other words, at each time period, the production by so far must be greater
than or equal to the demand by so far (1). The total production and total
demand over the time period must be equal (2). Positive production incurs
fixed costs and must be less than or equal to the total demand (3). demand
must be non-negative (4) and fixed cost variables are zero-one integers (5)(6).

6.1.1 Lot-Sizing inequalities

Definition 6.1. Let ` ∈ {1, 2, ..., n}, L := {1, 2, . . . , `}, and S ⊆ L. The
Lot-Sizing inequality is given by

∑
i∈S

xi +
∑
i∈L\S

di`yi ≥ d1` (6.7)

Theorem 6.1. For any 1 ≤ ` ≤ n, L = {1, 2, . . . , `}, and S ⊆ L, the
Lot-Sizing inequalities are valid for X.

Proof. Let (x̂, ŷ) be an arbitrary point in X.
Case 1: If ŷi = 0, ∀i ∈ L \ S, then

∑
i∈S

x̂i +
∑
i∈L\S

di`ŷi =
∑
i∈S

x̂i =
∑
i∈L

x̂i ≥ d1`.

Case 2: If on the contrary ∃i ∈ L \S such that ŷi = 1, let k = arg mini{i ∈
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L \ S : ŷi = 1}, then

∑
i∈S

x̂i +
∑
i∈L\S

di`ŷi ≥
k−1∑
i=1

x̂i +
∑
i∈L\S

di`ŷi (a)

≥
k−1∑
i=1

x̂i + dk` (b)

≥ d1,k−1 + dk`

= d1`

(a) follows from

k−1∑
i=1

xi =
∑

i∈{1,2,...,k−1}∩(L\S)

x̂i︸ ︷︷ ︸
= 0 by definition of k

+
∑

i∈{1,2,...,k−1}∩S

x̂i

≤
∑
i∈S

x̂i

(b) follows from ∑
i∈L\S

di`ŷi ≥ dk`ŷk = dk`.

Theorem 6.2. If dt ≥ 0,∀t ∈ {1, 2, ..., n}, the Lot-Sizing inequalities are
facet defining for conv(X) whenever ` < n, 1 ∈ S and L \ S 6= ∅. All facets
are distinct.

Proof. Since the dimension of conv(X) is (2n− 2) (we will prove this in the
next section), the dimension of a facet of conv(X) is (2n − 3). The idea
is to find (2n− 2) affinely independent feasible points that are tight at the
Lot-Sizing inequality. The detailed proof can be found in [3].

6.1.2 The Separation Problem for Lot-Sizing Inequalities

Given (x∗, y∗) satisfying (1)-(5), either find a Lot-Sizing inequality cutting
off the point, or show that all the inequalities are satisfied.
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Theorem 6.3. The following algorithm solves the separation problem for
Lot-Sizing inequalities.

Algorithm 1 Lot-Sizing Separation

1: for ` = 1 to n do
2: α` :=

∑`
j=1 min(x∗j , dj`y

∗
j ).

3: if α` < d1` then
4: Output L = {1, 2, ..., `} and S = {j ∈ L : x∗j ≤ dj`y∗j }
5: end if
6: end for

Proof. First we show that if the algorithm produces an output, the Lot-
Sizing inequality corresponding to the output cuts off the point. By defini-
tion of S, we have

∑
j∈S

x∗j +
∑
j∈L\S

dj`y
∗
j =

∑̀
j=1

min(x∗j , dj`y
∗
j ) = α` < d1`

Conversely let us show that if there exists a Lot-Sizing inequality (with
parameters `, L and S) cutting off the point, the pair (L, S) will be an
output of the algorithm. By definition of α`, we have

α` =
∑̀
j=1

min(x∗j , dj`y
∗
j ) ≤

∑
j∈S

x∗j +
∑
j∈L\S

dj`y
∗
j < d1`

6.1.3 Linear inequality description of the convex hull

Let

P = {(x, y) ∈ R2n : (x, y) satisfies (1)-(5) and (7), ∀1 ≤ ` ≤ n,L = {1, 2, ..., `}, and S ⊆ L}

We are going to prove that P = conv(X) under the condition of dt > 0,∀t ∈
{1, 2, ..., n}. To show this, we need the following proposition, which you will
prove in your homework.

Proposition 6.1. Suppose A,B ∈ Rn are two polytopes with the following
properties:
(i) A ⊆ B
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(ii) dim(A) = dim(B)
(iii) Let M(c) be the set of optimal solutions when optimizing cTx over A.
For all c ∈ Rn such that the objective value is finite and M(c) 6= A, M(c) is
completely contained in exactly one proper face of B.
Then

A = B.

Theorem 6.4. When dt > 0,∀t ∈ {1, 2, ..., n},P = conv(X).

It is clear that both P and conv(X) are polytopes. To apply Proposition
1 we need to prove that conditions (i),(ii) and (iii) hold for A being conv(X)
and B being P. The proof is relatively long, we break it into 3 pieces so
that it looks more organized.

Lemma 6.1. conv(X) ⊆P.

Proof. Since the Lot-Sizing inequalities are valid for X, they are also valid
for conv(X). We have conv(X) ⊆P.

Lemma 6.2. dim(conv(X)) = dim(P) = 2n− 2.

Proof. The number of variables in P is 2n. As d1 > 0, all feasible solutions
of P satisfy:

n∑
i=1

xi = d1n and y1 = 1

The first equality follows from constraints (2), the second equality is ob-
tained by observing that the Lot-Sizing inequality d1y1 ≥ d1 (` = 1 and
S = ∅ in this case) along with the constraint y1 ≤ 1 implies y1 = 1. We
have dim(P) ≤ 2n− 2.
Now we show that dim(conv(X)) ≥ 2n − 2, it is enough to exhibit 2n − 1
affinely independent points in X (i.e. no non-trivial combination of points
with zero sum of coefficients is zero). The first n points are of the form:

x y
d1n 1
0 0
0 0
...

...
0 0
0 0


,



x y
d1 1
d2n 1
0 0
...

...
0 0
0 0


, . . . ,



x y
d1 1
d2 1
d3 1
...

...
dn−1 1
dn 1
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The last n− 1 points are of the form:

x y
d1n 1
0 1
0 0
0 0
...

...
0 0
0 0


,



x y
d1n 1
0 0
0 1
0 0
...

...
0 0
0 0


, . . . ,



x y
d1n 1
0 0
0 0
0 0
...

...
0 0
0 1


We conclude that

2n− 2 ≤ dim(conv(X)) ≤ dim(P) ≤ 2n− 2

=⇒ dim(conv(X)) = dim(P) = 2n− 2

.

Lemma 6.3. Let M(p, q) (p, q ∈ Rn arbitrary) be the set of all optimal
solutions to the problem minimizing

∑n
t=1 ptxt+

∑n
t=1 qtyt such that (x, y) ∈

conv(X) with M(p, q) 6= conv(X), then M(p, q) is contained in exactly one
proper face of conv(X).

Proof. First we observe that as
∑n

t=1 xt = d1n, we can add any multiple of
this constraint to the objective function without modifying the set M(p, q).
Thus by adding to the objective (−mint pt)(

∑n
u=1 xu), we can assume with-

out loss of generality that mint pt = 0. In addition, since we have y1 = 1,
we can assume that q1 = 0. Notice that now pt are all non-negative, but qt
can be negative for t ≥ 2.
Suppose qt < 0 for some t ≥ 2. For any feasible solution with yt = 0, if
we change yt from 0 to 1 while keeping the value of other variables, the
new solution is still feasible. But the new feasible solution would make the
objective strictly smaller. We must have

M(p, q) ⊆ {(x, y) : yt = 1}. (6.8)

We suppose from now on that qt ≥ 0 for t ≥ 2. Let ` = arg maxt
{
pt +

qt > 0
}

, as (p, q) 6= (0, 0) (otherwise M(p, q) = conv(X)), we must have
1 ≤ ` ≤ n. Suppose that pk = qk = 0 for some k < `, which means we can
produce as much as we can in the kth time period with zero cost so that we
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do not need to produce anything in the rest time periods. Since p` + q` > 0,
we must have

M(p, q) ⊆ {(x, y) : x` = 0}. (6.9)

Otherwise we have pt + qt > 0,∀t ≤ ` and pt + qt = 0,∀t > `. Now let
L = {1, 2, ..., `} and S =

{
t ∈ L : pt > 0

}
, notice that 1 ∈ S since we have

assumed that q1 = 0. We show that

M(p, q) ⊆ {(x, y) :
∑
t∈S

xt +
∑
t∈L\S

dt`yt = d1`}. (6.10)

Consider an optimal solution (x∗, y∗). Let τ := min{t ∈ L \ S : y∗t = 1}.
This is under the assumption that L\S 6= ∅ and ∃t ∈ L\S such that y∗t 6= 0,
we will deal with these special cases later.
As pτ = 0 by definition of S, one can produce an amount dτl or more at zero
variable cost in time period τ . Also as pt + qt > 0 for all t ∈ L with t > τ ,
in an optimal solution we must have x∗ = y∗ = 0 for all t ∈ L with t > τ .
This is true because otherwise a strictly optimal solution would be obtained
by reducing x∗t and/or y∗t and increasing x∗τ , which is a contradiction to the
optimality of (x∗, y∗). So we have∑
t∈L\S

dt`y
∗
t =

∑
t∈L\S:t<τ

dt`y
∗
t︸ ︷︷ ︸

= 0 by definition of τ

+dτ`y
∗
τ +

∑
t∈L\S:t>τ

dt`y
∗
t︸ ︷︷ ︸

= 0 since x∗t = y∗t = 0, ∀t ∈ L, t > τ

= dτ`y
∗
τ = dτ`

And
∑

t∈S:t≥τ x
∗
t = 0 (notice that τ /∈ S). As x∗t = y∗t = 0 for all t ∈ L \ S

with t < τ ,
∑τ−1

t=1 x
∗
t =

∑
t∈S:t<τ x

∗
t ≥ d1,τ−1. But as pt > 0 for all periods

t ∈ S with t < τ , a solution can only be optimal if
∑

t∈S:t<τ x
∗
t = d1,τ−1.

This is true because otherwise a strictly better solution can be obtained by
reducing

∑
t∈S:t<τ x

∗
t and increasing x∗τ , which leads to a contradiction. We

have shown that∑
t∈S:t<τ

x∗t +
∑

t∈S:t≥τ
x∗t +

∑
t∈L\S

dt`y
∗
t = d1,τ−1 + 0 + dτ` = d1`. (6.11)

Since the above equality holds for any (x∗, y∗) ∈M(p, q), we obtain (10).
In the special case where L\S = ∅ (that is L = S), notice that since mint pt =
0, we must have ` < n . Then

∑
t∈S x

∗
t +

∑
t∈L\S dt`y

∗
t =

∑`
t=1 x

∗
t = d1`,

because production in period `+ 1 has zero cost.
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In the special case where y∗t = 0, ∀t ∈ L \S, by the same argument we have∑
t∈S x

∗
t +

∑
t∈L\S dt`y

∗
t =

∑`
t=1 x

∗
t = d1`.

Now it can be readily checked that all the faces used above in the proof
((8),(9) and (10)) are proper faces of P.

6.2 Perfect Matching

Recall that a matching in an undirected graph G = (V,E) is a set M ⊆ E of
pairwise disjoint edges, where an edge is viewed here as a set of two distinct
nodes. In other words, a matching is an independent edge set. A matching is
perfect if it covers every node of the graph (that is, every node is contained
in exactly one edge of the matching). A basic problem in combinatorial
optimization is the maximum cardinality matching problem, that is, finding
a matching of G of maximum cardinality. Obviously a perfect matching of
G has maximum cardinality, but in general a perfect matching might not
exist. Specifically, perfect matchings are only possible on graphs with an
even number of vertices.

Figure 6.1: The nine perfect matchings of the cubical graph.

Recall that the perfect matching polytope of G is the convex hull of all
characteristic vectors of perfect matchings. In this lecture, we will provide
a representation for the perfect matching polytope. This representation is
provided as a theorem, namely, the Perfect Matching Polytope Theorem or
Edmonds’ Matching Polyhedron Theorem. We will devote this lecture to
proving this theorem.

Suppose that G = (V,E) is an undirected graph with |V | even (we will
allow multiple edges between any two vertices). Let S(G) be the perfect
matching polytope, i.e., S(G) = convex hull of perfect matchings of the
graph G (in which multiple edges between nodes are allowed). For any
V ′ ⊆ V , we define δ(V ′) as the set of edges of G that intersect V ′ in exactly
one point.
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Definition 6.2.

P (G) := {x ∈ [0, 1]E | xe := x(e) satisfies the conditions (6.12a)-(6.12c)}
xe ≥ 0, ∀e ∈ E, (6.12a)∑
e∈δ({v})

= 1, ∀v ∈ V, (6.12b)

∑
e∈δ(U)

≥ 1, ∀U ⊂ V, where |U | is odd, and 3 ≤ |U | ≤ |V | − 3.

(6.12c)

Theorem 6.5 (Edmonds’ Matching Polyhedron Theorem). The perfect
matching polytope of a graph G = (V,E) with |V | even is determined by
the inequalities (6.12a)-(6.12c), i.e. S(G) = P (G).

Proof. S(G) ⊆ P (G) is obvious, since P (G) is convex, and every perfect
matching satisfies the conditions (6.12a)-(6.12c).

We then prove P (G) ⊆ S(G) by contradiction. Suppose that there exists
some G such that P (G) * S(G). Let Ĝ = (V̂ , Ê) be a smallest graph (in

terms of |V̂ |+ |Ê|) such that P (Ĝ) 6⊆ S(Ĝ) Therefore, at least one extreme
point, say x̂, of P (Ĝ) is not in S(Ĝ).

Claim 1 : 1 > x̂e > 0, ∀e ∈ Ê.

Proof. Suppose x̂e = 1 for some e ∈ Ê. Then by deleting this edge e
and its incident vertices from Ĝ, we can obtain a smaller counterex-
ample. Similarly, suppose x̂e = 0, then by deleting this edge e, we can
obtain a smaller counterexample.

Claim 2 : deg(v) ≥ 2, ∀v ∈ V̂ .

Proof. For any v ∈ V̂ , there exist e, e′ ∈ δ({v}) with e 6= e′ such that
x̂e, x̂e′ > 0 (due to Claim 1 and constraint (6.12b)).

Claim 3 : |Ê| ≥ |V̂ |

Proof. This is because
∑

v∈V̂ deg(v) = 2|Ê|, and 2|V̂ | ≤
∑

v∈V̂ deg(v)
by claim 2.

Claim 4 : Suppose that |Ê| = |V̂ |; then Theorem 6.5 is correct.
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Proof. Suppose |Ê| = |V̂ |, it implies deg(v) = 2 for all v ∈ V̂ ; in other
words, Ĝ is a union of cycles. There are two cases:

Case 1: All the cycles are of even cardinality. Then Theorem 6.5 holds
trivially, as constraints (6.12a) and (6.12b) already determine the
convex hull S(Ĝ), i.e., S(Ĝ) = P (Ĝ). For example, given |V̂ | = 4,
then P (Ĝ) = {(a, 1 − a, a, 1 − a) ∈ [0, 1]4 : a ∈ [0, 1]}. The only
extreme points of P (Ĝ) are (0, 1, 0, 1) and (1, 0, 1, 0) that lie in
S(Ĝ). This is because for 0 < a < 1, we have

(a, 1−a, a, 1−a) =
1

2
(a−ε, 1−a+ε, a−ε, 1−a+ε)+

1

2
(a+ε, 1−a−ε, a+ε, 1−a−ε),

where ε = min{a, 1 − a} > 0. This means P (Ĝ) ⊆ S(Ĝ). We
can easily generalize the above argument to the cyclic graph Ĝ
with even |V̂ |. [Alternatively this follows from the fact that the
matrix corresponding to the LP relaxation is TU.]

Case 2: There exists an odd cycle in Ĝ. Since the odd number of vertices
implies no perfect matching, then S(Ĝ) and P (Ĝ) are both empty.

Claim 5 : We consider the case |Ê| > |V̂ |. Note that x̂ is |Ê|-dimensional and
it is an extreme point of P (Ĝ). However, at most |V̂ | inequalities are
binding at x̂ among the constraints (6.12a) and (6.12b) (due to Claim
1). Then there exists some Ũ corresponding to inequality (6.12c) (with
|Û | odd and 3 ≤ |Û | ≤ |V̂ | − 3), which is binding at x̂ such that∑

e∈δ(Ũ)

x̂e = 1. (6.13)

Definition 6.3 (Vertex Contraction). The contraction of a set of ver-
tices (or nodes) V ′ = {v1, ..., vk} in a graph G = (V,E) (V ′ ⊆ V )
produces a graph in which the nodes in V ′ are replaced with a single
node v∗ such that v∗ is adjacent to the union of the nodes to which
V ′ were originally adjacent. In vertex contraction, it doesn’t matter
if vi, vj ∈ V ′ are connected by an edge; if they are, the edge is simply
removed upon contraction. See http: // mathworld. wolfram. com/

VertexContraction. html for more details.
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Next we construct two graphs by contracting Ũ and V \Ũ respectively.
Suppose that Ũ contracts to v∗1, and V \Ũ contracts to v∗2. We define

Ĝ1 := (V̂ 1, Ê1),

where V̂ 1 = Ũ ∪ {v∗2}, Ê1 = {(v′, v′′) : v′, v′′ ∈ Ũ , (v′, v′′) ∈ Ê} ∪
{(v′, v∗2) : v′ ∈ Ũ , v′′ ∈ V \Ũ , (v′, v′′) ∈ Ê}. Similarly, we define

Ĝ2 := (V̂ 2, Ê2),

where V̂ 2 = {v∗1} ∪ V \Ũ , Ê2 = {(v′, v′′) : v′, v′′ ∈ V \Ũ , (v′, v′′) ∈
Ê} ∪ {(v∗1, v′′) : v′ ∈ Ũ , v′′ ∈ V \Ũ , (v′, v′′) ∈ Ê}. Note that both Ĝ1

and Ĝ2 may contain multiple edges between two nodes.

Define x̂1 and x̂2 as the projections of x̂ onto (the edges of) Ĝ1 and Ĝ2,
respectively. Denote by δĜi(V

′) the set of edges of Ĝi that intersect

V ′ ⊆ V̂ i in exactly one point for i = 1, 2.

Claim 6 : x̂1 ∈ P (Ĝ1) and x̂2 ∈ P (Ĝ2).

Proof. We show x̂1 ∈ P (Ĝ1) by checking the constraints (6.12a)-
(6.12c) corresponding to P (Ĝ1). We can also show x̂2 ∈ P (Ĝ2) in
a parallel way.

Constraint (1): By the definition of x̂, x̂1
e1 = x̂e > 0 for any e ∈ Ê1,

where e1 is the projection of e on Ĝ1.

Constraint (2): It is easy to see
∑

e1∈δĜ1 ({u}) x̂
1
e1 =

∑
e∈δ({u}) x̂e = 1 if

u ∈ Ũ . On the other hand,
∑

e1∈δĜ1 ({v∗2}) x̂e1 = 1 due to (6.13). Note

that ∑
e1∈δĜ1 ({v∗2})

x̂e1 =
∑

e1∈δĜ2 ({v∗1})

x̂e2 =
∑
e∈δ(Ũ)

x̂e.

where ei is the projection of e on Ĝi for i = 1, 2.

Constraint (3): We first pick any U ⊆ Ũ satisfying that |U | is odd and
3 ≤ |U | ≤ |V̂ 1|−3: it is easy to see that

∑
e1∈δĜ1 (U) x̂

1
e1 =

∑
e∈δ(U) x̂e ≥

1. Then we consider the case U = {u1, ..., uk, v∗1} with k even. Note
that we require 2 ≤ k ≤ |V̂ | − 6; otherwise, |U | = k + 1 /∈ [3, |V̂ 1| − 3]
(recall that |V̂ 1| ≤ |V̂ | − 2 ); we will revisit this point in Claim 7).
Then ∑

e1∈δĜ1 (U)

x̂1
e1 =

∑
e∈δ(Ū)

x̂e ≥ 1,
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where Ū = {u1, ..., uk} ∪ (V \Ũ). Then the inequality holds since 3 ≤
|Ū | ≤ (|V̂ | − 6) + 3 = |V̂ | − 3.

Claim 7 : x̂1 ∈ S(Ĝ1), x̂2 ∈ S(Ĝ2)

Proof. Otherwise, Ĝ1 and Ĝ2 is a smaller counterexample, which con-
tradicts our “smallest” assumption on Ĝ with the property P (Ĝ) 6⊆
S(Ĝ). To see this, note that Ĝ1 is a smaller graph c.f. Ĝ, since the
number of vertices is reduced by at least 2, and the number of edges
is also reduced; we can apply similar argument on Ĝ2.

Claim 7 means that x̂1 and x̂2 can be represented as convex combina-
tions of perfect matchings in Ĝ1 and Ĝ2, respectively, i.e.,

x̂1 =

t1∑
i=1

λix
m′i , x̂2 =

t2∑
j=1

µjx
m′′j ,

where λi, µj ≥ 0,
∑t1

i=1 λi = 1,
∑t2

j=1 µj = 1, xm
′
i are 0 − 1 vectors

corresponding to some perfect matching m′i in Ĝ1 for i = 1, ..., t1, and

xm
′′
j are 0 − 1 vectors corresponding to some perfect matching m′′j in

Ĝ2 for j = 1, ..., t2.

We will show that these decompositions can be glued together
to represent x̂ as a convex combination of perfect mappings
in Ĝ, contradicting our assumption that x̂ /∈ S(Ĝ), i.e., P (Ĝ) 6⊆
S(Ĝ).

Claim 8 : λ′s and µ′s are rational numbers.

Proof. Note that x̂ is rational because it is an extreme point of a
rational polytope P (Ĝ). Then x̂1 and x̂2 are both rational because

they are projections of x̂ on Ĝ1 and Ĝ2. Similarly, {xm′i} and {xm
′′
j }

are rational, since they are extreme points of rational polytopes P (Ĝ1)
and P (Ĝ2), respectively. Therefore, λ′s and µ′s should be rational
numbers.

Claim 9 : We may assume that

x̂1 =
1

K

K∑
i=1

xm
′
i , x̂2 =

1

K

K∑
j=1

xm
′′
j ,
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where K is a natural number (e.g., the least common multiple of the
denominators of λ′s and µ′s by representing them as fractions). Note
that {m′i}Ki=1 (resp., {m′′j }Kj=1) may contain repetitions of the extreme

points of S(Ĝ1) (resp. S(Ĝ2)).

Pick any e = (v′, v′′) ∈ δ(Ũ), i.e., (v′, v′′) ∈ Ê with v′ ∈ Ũ and
v′′ ∈ V \Ũ . Then by construction of Ĝ1 and Ĝ2 we have x̂1

e1 = x̂2
e2 =

x̂e, where e1 = (v′, v∗2) and e2 = (v∗1, v′′). We can further assume

that x
m′i
e = x

m′′j
e if i = j. This is because with a fixed m′i there is

exactly one e1 = (v′, v∗2) ∈ δĜ1(Ũ) such that x
m′i
e = 1{e=e1}; with a

fixed m′′j there is exactly one e2 = (v∗1, v′′) ∈ δĜ2(V̂ \Ũ) such that

x
m′i
e = 1{e=e2}. Thus we can arrange the order of {m′i}Ki=1 such that

x
m′i
e = x

m′′i
e for e ∈ δ(Ũ) and all i = 1, ...,K. It is straightforward to

see that mi = m′i∪m′′i (after the rearrangement) is a perfect matching
in Ĝ.

Then we have the representation x̂ = 1
K

∑K
i=1 x

mi (by checking x̂e =
1
K

∑K
i=1 x

mi
e for all e ∈ Ê), which is a contradiction to x̂ /∈ S(Ĝ) (or

equivalently, P (Ĝ) 6⊆ S(Ĝ) ).

6.3 Matroid and polymatroid

First, we define a matroid and introduce the notion of rank.

Definition 6.4 (Matroid). A matroid is a pair M = {S, C} consisting of a
finite set S and a nonempty collection C of subsets of S (i.e. C ⊆ 2S) such
that

1. If I ∈ C and J ⊆ I then J ∈ C.

2. If I, J ∈ C and |I| < |J | then there exists x ∈ J\I such that I∪{z} ∈ C.

The elements of C are called independent sets, and elements in 2S \C are
called dependent sets. We refer to 1 as the independence property and 2 as
the exchange property.

Definition 6.5 (Base). Given some U ⊆ S, a set I ⊆ U is called a base
of U if I is a maximal (by inclusion) independent set contained in U . The
bases of a matroid are the bases of S.
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Note that a matroid is a generalization of the notion of linear indepen-
dence for vector spaces. To see this, let S be the set of columns of a matrix
and let C be the sets of linearly independent columns of the matrix. The
independence property is clear since a subset of a linearly independent set
of vectors is also linearly independent. The exchange property holds since,
if I, J are both sets of linearly independent vectors such that |I| < |J |, the
span of the vectors of I cannot be the same as the span of the vectors of J ,
else J is would not be a linearly independent set. That means there must
be some x ∈ J such that x is not in the span of the vectors of I, so I ∪ {x}
is a linearly independent set.

As another example of a matroid, consider a graph G = (V,E). Let the
base set S = E and let C be the subsets of edges which do not have cycles,
that is, forests on the edges of G. Then M = {S, C} is a matroid.

As with vector spaces, all bases have the same cardinality.

Proposition 6.2. Let M = {S, C} be a matroid and U ⊆ S. Then the
cardinality of any base of U is the same.

Proof. Aiming towards contradiction, suppose B1 ⊆ U and B2 ⊆ U are
bases of U where |B1| < |B2|. By the exchange property, there exists z ∈
B2 \ B1 such that B1 ∪ {z} ∈ C. But B1 ∪ {z} ⊆ U . This means B1 was
not maximal by inclusion and hence was not a base, a contradiction.

Based on the above Proposition, we can now make the following defini-
tion.

Definition 6.6 (Rank). The cardinality of a base of U is called the rank of
U , which we denote r(U). The rank of a matroid is the rank of S.

6.3.1 Optimization over Matroids

Next, we consider the maximum-weight matroid problem. Let M = {S, C}
be a matroid and let w : S → R+ be a function which assigns a weight to
every element of S. For ease of notation, we say w(U) =

∑
u∈U w(u). Then

we can formulate our optimization problem as

max
U⊆2S

w(U)

s.t. U ∈ C
(6.14)
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Greedy Algorithm

We can solve problem (6.14) with a greedy algorithm. We start with an
empty set. At each iteration, we add the maximum-weight element from
the set of elements that we have not yet selected such that our set remains
independent. Formally, we have:

• For j = 1, . . . , r(S)

• Find y ∈ argmax{w(u) : u ∈ S \ I and I ∪ {u} ∈ C}

• I ← I ∪ {y}

• End-for

Note that, in the case of finding a maximum-weight spanning forest, this is
exactly Kruskal’s algorithm.

Correctness of the Greedy Algorithm

Theorem 6.6. The greedy algorithm is correct.

Proof. First, we know that r(S) is finite, so the algorithm will terminate.
We must show that the algorithm results in the optimal solution. We will
say that a set I ∈ C is a “good set” if I is contained in an optimal base
of S. We will show that at every step of the algorithm, our set I is a good
set. This shows our claim since the algorithm will terminate with a good
set of cardinality r(S), so I will itself be an optimal base. We proceed by
induction on |I|.

The base case where |I| = 0 is trivial since I = ∅ is clearly a subset of
any optimal base of S.

Now, assume that I is good. We must show that I ∪ {y} is good, where
y is obtained in one iteration of the for loop. Let B be an optimal base such
that I ⊆ B. Two cases arise depending on whether or not y ∈ B:

1. If y ∈ B then I ∪ {y} ∈ B, so I ∪ {y} is also good, as required.

2. We now consider the case where y /∈ B. We will show that there exists
z ∈ B such that B′ := (B ∪ {y}) \ {z} is a base of S. By assumption,
I ⊆ B, and by the algorithm, I ∪ {y} ∈ C. Thus, if |I ∪ {y}| = |B|, let
B′ = I ∪ {y}, and we are done.

Now suppose that |I ∪ {y}| < |B|. Then, by the exchange property,
there exists v ∈ B \ (I ∪ {y}) such that I ∪ {y} ∪ {v} ∈ C. We can
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repeat this process k := |B| − |I ∪ {y}| times until we have B′ =
I ∪ {y} ∪ {z1} ∪ · · · ∪ {zk} ∈ C, where zi ∈ B for all 1 ≤ i ≤ k. We
know that B′ is a base since it has the same cardinality as B, and
since y is the only “outsider” in B′, we know that there is exactly one
element v ∈ B such that v /∈ B′. Thus, B′ is the desired base.

Last, we show that w(B′) ≥ w(B). To see this, note that

w(B′)− w(B) = w(y)− w(v) ≥ 0, (6.15)

where the inequality holds by the greediness of the algorithm: Since
v /∈ B′, v /∈ I, when y was chosen, v was also available, but not chosen.
This implies that the weight of y was at least as much as that of v.
By (6.15), we see that B′ is also an optimal base, so I ∪ {y} is a good
set.

Thus, in both cases we found that I ∪ {y} is a good set, so I is a good set
at every step of the algorithm, as claimed.

6.3.2 Matroid Polytope

We now consider an integer programming formulation for the feasible region
of problem (6.14). We will let

xu =

{
1 if u ∈ S is selected

0 otherwise.

The integer programming formulation to select an independent set from
a matroid is:

x(U) :=
∑
u∈U

xu ≤ r(U) ∀ U ⊆ S

xs ∈ {0, 1} ∀ s ∈ S
(6.16)

This is a correct formulation because if U is not independent, then r(U) <
|U |. So the first constraint reads∑

u∈U
xu ≤ r(U) < |U |,

so we cannot pick all the elements of U . In the reverse direction, this is a
valid inequality, since for all independent sets U , |U | ≤ r(U) by the definition
of rank.
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We now relax integrality to define the matroid polytope. Note xs ≤ 1 is
implied by x(U) ≤ r(U) for U ⊆ S with |U | = 1, so our formulation is

x(U) ≤ r(U) ∀ U ⊆ S
xs ≥ 0 ∀ s ∈ S

(6.17)

It turns out that formulation (6.17) is integral. We will prove this by showing
that the system in (6.17) is TDI.

Lemma 6.4. Let M = (S,C) be a matroid, and w : S → Z+ where |S| = n.
Then there exists U1, U2, ..., Un ⊆ S, and λ1, λ2, ..., λn ∈ Z+ such that

1. w =
∑n

i=1 λix
U i

;

2. max{w(I) | I ∈ C} =
∑n

i=1 λir(U
i).

where xU
i ∈ {0, 1}n, and if element sj is contained in U i, xU

i

j = 1, and 0
otherwise.

Proof. WLOG, we sort the elements of S as s1, s2, ..., sn such that

w(s1) ≥ w(s2) ≥ ... ≥ w(sn).

Then we define

U i = {s1, ..., si}
λi = w(si)− w(si+1) ∀i = 1, ..., n− 1,

λn = w(sn).

1. It is easy to check w =
∑n

i=1 λix
U i

by plugging in λi, U
i and xU

i
.

2. We have shown that max{w(I) | I ∈ C} can be obtained by the greedy
algorithm, and we know I = {si | r(U i) > r(U i+1), i = 1, 2, ..., n− 1},
then

max{w(I) | I ∈ C} =

n∑
i=1

w(si)[r(U
i)− r(U i+1)]

=

n−1∑
i=1

[w(si)− w(si+1)]r(U i) + w(sn)r(Un)

=
n∑
i=1

λir(U
i)
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Consider following two problem,

(P ) max
∑
s∈S

wsxs (D) min
∑
U

yUrU

s.t.
∑
s∈U

xs ≤ r(U) ∀U ⊆ S s.t.
∑

U that contains s

yU ≥ ws ∀s

xs ≥ 0 yU ≥ 0

Theorem 6.7. (P) is integral.

Proof. For w : S → Z, we can update w : S → Z+, and in this way, by
choosing the x with minimum coordinate number, we can obtain the same
objective value with (P). By Lemma 1, define ŷU as

ŷU =

{
λi if U = U i

0 Otherwise.

If ws’s are integral, λi’s are integral, so that ŷU ’s are integral. Since r(U)’s
are integral since they are rank of U ’s. In this way, (P) is TDI with integral
right hand side r(U). Hence, by Proposition 3, (P) is integral.

6.4 Suggested exercises

1. Given a graph, let S be the set of all of edges and C be the collection of
subsets of edges which do not contain a cycle. Show that M = (S, C)
is a matroid.

2. Suppose you have n tasks to complete in n days. Each task requires
your attention for a full day. Task j comes with a deadline dj , the last
day by which the job should be completed, and a penalty pj that you
must pay if you do not complete each task by its assigned deadline.
The problem is to find the order to perform your tasks in order to
minimize the total penalty you must pay. Prove that this problem can
be solve in polynomial time. [Hint: Call a subset X of the tasks good
if there is a schedule in which every task in X is on time. Prove that
the collection of good task sets form a matroid.]
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3. (*) Prove that the maching polytope for a given a graph G(V,E):∑
e∈δ(v)

xe ≤ 1 ∀v ∈ V

∑
e∈E(U)

xe ≤
|U | − 1

2
∀U ⊆ V, |U | odd

xe ≥ 0 ∀e ∈ E,

is TDI.
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Chapter 7

Introduction to
Cutting-plane Theory

7.1 Introduction

In this section we will present different methods to obtain cutting planes.
We will sort these methods in four categories: geometric ideas, relaxation
based cuts and other approaches.

7.1.1 Geometric Ideas

We are given a polyhedron P = {x : Ax ≤ b}, and we are interested in
approximating conv(P ∩ Zn). ‘

Chvatal-Gomory Cutting Planes (Also called Gomory Fractional
Cut)

Suppose we are given a valid inequality αx ≤ β for P ∩ Zn. If α ∈ Zn, then
α>x ∈ Z for all x ∈ P ∩ Zn and therefore

n∑
j=1

αjxj ≤ bβc

is also a valid inequality for P ∩Zn. This class of cutting-planes is called as
the Chvatal-Gomoty cuts.

123
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Let us illustrate this with an example, by considering the following set

x1 + x2 ≤ 3

5x1 − 3x2 ≤ 3

x1, x2 ≥ 0

x1, x2 ∈ Z

A valid inequality is given by 4x1 + 3x2 ≤ 10.5. From the previous proposi-
tion, 4x1 +3x2 ≤ b10.5c is also a valid inequality for the set. This inequality
is plotted in Figure 7.1.1. Let us also introduce the concept of CG closure.

Figure 7.1: Chvatal-Gomory Cut

The idea is to measure the power of CG cuts by testing the power of all CG
cuts added simultaneously.

Definition 7.1. Let P be a polyhedron. The support function of P is denoted
as follows:

σP (π) := max{π>x |x ∈ P}.

Note that all non-trivial CG cuts can then be seen to be of the following
form:

π>x ≤ bσP (π)c.

The CG closure is then defined as the set:⋂
π∈Zn |σP (π)<∞

{x |π>x ≤ bσP (π)c.

We will study several properties of the CG closure.
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Split Disjunctive Cuts

An arbitrary split disjunction is:

π>x ≤ π0 ∨ π>x ≥ π0 + 1 where (π, π0) ∈ Zn × Z.

Every integer point satisfies this disjunction, i.e., if x̂ ∈ Zn, then either
π>x̂ ≤ π0 or π>x̂ ≥ π0 + 1.

Let us consider a polyhedron P . We can now define two subsets:

P π1 = {x ∈ P : πTx ≤ π0}
P π2 = {x ∈ P : πTx ≥ π0 + 1}

We then call P π,π0 := conv(P π1 ∪ P π2 ) the disjunctive hull with respect to
the disjunction
πTx ≤ π0 ∨ πTx ≥ π0 + 1. The disjunctive hull is in fact a polyhedron. The
valid inequalities for P π,π0 can serve as cutting-planes. These are called split
cuts.

Given a fixed disjunction (π>x ≤ π0) ∨ (π>x ≥ π0 + 1) and fractional
point x∗ ∈ P \ Zn, we may ask does there exists a split cut that cuts off
x∗ from P I . Let P := {x |Ax ≤ b}. It is easily verified that we can
answer this question by solving the following LP, which essentially tries to
find an inequality α>x ≤ β that is valid for both P ∩ {x |π>x ≤ π0} and
P ∩{x |π>x ≥ 1π0+1} while simultaneosly attempting to separate x∗ (using
Farkas Lemma):

zCGLP : maxα,β,λ1,λ1
0,λ

2,λ2
0

α>x∗ − β

s.t. αT = (λ1)>A+ λ1
0π
>

β ≥ (λ1)>b+ λ1
0π0

αT = (λ2)>A+ λ2
0(−π>)

β ≥ (λ2)>b+ λ2
0(−π0 − 1)

λ1, λ2, λ1
0, λ

2
0 ≥ 0

‖α‖∞ ≤ 1, |β| ≤ 1 (Normalization)

where if zCGLP ≤ 0 imples that we cannot separate the point x∗ using the
given disjunction or other wise α>x ≤ β is required inequality. The above
LP is called the cut-generating LP.

Let us also introduce the concept of split closure. The idea is to look
at the intersection of disjunctive hulls over all split disjunctions, and then
study the resulting object. More precisely the split closure is defined as:
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SC =
⋂

(π,π0)∈Zn×Z P
π,π0

Notice that the split disjunctive cuts are a generalization of CG cuts, since
each CG cut is obtained as a split cut when either P π1 = ∅ or P π2 = ∅.

Cutting-planes from lattice-free convex sets

One way to think about the split cut is that the set Sπ,π := {x |π0 ≤ πTx ≤
pi0 + 1} contains no integer point in its interior. Then given a polyhedron
P , we obtain cutting-planes by using valid inequalities for P \ int(Sπ,π).

One may generalize this idea in the following fashion.

Definition 7.2 (Lattice-free convex set). A convex set Q is a lattice-free
convex set if int(Q) ∩ Zn = ∅. (Note integer points are allowed on the
boundary).

Now one uses valid inequalities for P \ int(Q) to obtain cutting-planes.
Clearly, we would like to use large lattice-free sets to obtain cuts. This

motivates the following definition.

Definition 7.3 (Maximal Lattice-free convex set). A set S ⊆ Rn is called
a maximal lattice-free convex set if:

1. S is a lattice-free convex set

2. If S̃ ⊆ Rn is a lattice-free convex set and S̃ ⊇ S, then S̃ = S.

Maximal lattice-free convex set have some very nice properties.

Theorem 7.1. Let S ⊆ Rn is a full-dimensional maximal lattice-free convex
set. Then:
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1. S is a polyhedron.

2. Every facet of S contains an integer point in its relative interior.

3. S has at most 2n facets.

While we do not prove Theorem 7.1 here, we present a proof sketch for
the first part of Theorem7.1 under an additional boundedness assumption.

Proposition 7.1. Let S ⊆ Rn is a full-dimensional maximal lattice-free
convex set that is bounded. Then S is a polytope.

Proof. Since S is bounded, we have that S ⊆ box(M) where box(M) :=
{x | −M ≤ xj ≤M ∀j ∈ [n]}. Consider any integer point in box(M). Since
this integer point does not belong to int(S) (which is a convex set), there
exists a separating hyperplane that separates the integer point from int(S).
Since there is a finite number of integer points in box(M), we obtain a finite
number of separating hyperplanes. Consider the polytope defined by the
separating hyperplanes. This polytope does not contain any integer point in
its interior (by construction) and contains S. Thus, S is this polytope.

If Q := {x | (ai)Tx ≤ bi, i ∈ {1, . . . ,m}} is a lattice-free polyhedron, then
we have that

Zn ⊆
m∨
i=1

{x|(ai)Tx ≥ bi}.

Thus, this is a mult term disjunction and therefore one may find the cutting
planes for P if one uses valid inequalities for

m∨
i=1

P ∩ {x|(ai)Tx ≥ bi}.

We can essentially set up a cut-generating LP again.

Cuts from Multiple simulataneous Splits

It is also possible to do multiple splits simultaneously as shown in the
Figure below. We find valid inequalities for the resulting set, i.e. for
(π, π0), (η, η0) ∈ Zn × Z valid inequality for P ∩ Zn may be found by using
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valid inequalities for: (
P ∩ {x |πTx ≤ π0} ∩ {x | ηTx ≤ η0}

)∨(
P ∩ {x |πTx ≤ π0} ∩ {x | ηTx ≥ η0 + 1}

)∨(
P ∩ {x |πTx ≥ π0 + 1} ∩ {x | ηTx ≤ η0}

)∨(
P ∩ {x |πTx ≥ π0 + 1} ∩ {x | ηTx ≥ η0 + 1}

)
.

We can essentially set up a cut-generating LP again.

7.1.2 Cuts from relaxation

The basic idea of these cutting planes is illustrated in the Figure below:

Mixed Integer Rounding (Nemhauser and Wolsey)

Let us consider the set X = {(x, y) ∈ Z× R+ : x ≤ b+ y}. Then

x ≤ bbc+ 1
1−f x

where f = b− bbc is the fractional part of b, is a valid inequality for X. See
Figure 7.1.2.

We can write “an extension” of the MIR for the following set
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Figure 7.2: MIR

X ′ = {(x, y) ∈ Z|N | × R+ :
∑
j∈N

ajxj + y+ ≤ b+ y−}

to obtain the resulting cut:∑
j∈N

(
bajc+

(fj−f)+

1−f

)
xj ≤ bbc+ y−

1−f

where fj = aj − bajc, that is a valid inequality for X ′. The key observation
is that X ′ is a one-row relaxation of any general mixed integer program,
where all the continuous variables have been aggregated into two variables
(one with positive coefficients, one with negative coefficients).

Knapsack (or Cover) Cuts

Let consider a knapsack type constraint in the form αTx ≤ α0 where α ∈
Z|V |+ , α0 ∈ Z+ and V is a subset of indices of binary variables x. A set
Q ⊆ V is called a cover if

∑
j∈Q

αj > α0. In other words, Q is a set of binary

variables which cannot be all together non-zero at the same time. In the
light of this definition, the simplest version of a cover inequality is∑

j∈Q
xj ≤ |Q| − 1

For instance, let us consider the following inequality

3x1 + 5x2 + 4x3 + 2x4 + 7x5 ≤ 8

0 ≤ x1, x2, x3, x4, x5 ≤ 1

x1, x2, x3, x4, x5 ∈ Z+
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We have 5 + 4 > 8, so x2 and x3 cannot be simultaneously equal to 1. Thus,

x2 + x3 ≤ 1

defines a cover inequality.
Other possible cover inequalities are:

x4 + x5 ≤ 1

x1 + x2 + x3 ≤ 2

x1 + x2 + x4 ≤ 2

x1 + x2 + x5 ≤ 2

...

Flow Cover Cuts

“Flow Set”: It consists in a flow problem with arcs incoming and outgoing
to a single node: to each of these arcs is associated a continuous variables
measuring the flow on the arc and upper bounded by the arc capacity, if
the flow over the arc is non-zero then a binary variable associated with the
same arc must be set to 1 (in order to model fixed charge). A flow balance
on the node must also be satisfied.

It turns out for many problems such relaxations can be constructed.
Then the resulting inequalities for this flow set is used as cuts.

7.1.3 Algebraic approach

Suppose S = Zn ∩ P , where P = {x ∈ Rn+ : Ax ≥ b} (A is a n×m matrix).
We want to give a functional description of valid inequalities for S.

Definition 7.4 (Subdditive Function). A function Φ : D ⊆ Rm → R is
called subadditive over D if

Φ(d1) + Φ(d2) ≥ Φ(d1 + d2) for all d1, d2, d1 + d2 ∈ D.

Definition 7.5 (Superadditive Function). A function Φ : D ⊆ Rm → R is
called superadditive over D if

Φ(d1) + Φ(d2) ≤ Φ(d1 + d2) for all d1, d2, d1 + d2 ∈ D.

Definition 7.6 (Non-Decreasing Function). A function Φ : D ⊆ Rm → R
is called non-decreasing over D if d1, d2 ∈ D, d1 − d2 non-negative vector
implies Φ(d1)− Φ(d2) non-negative vector.
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Proposition 7.2. If Φ : Rm → R is superadditive, non-decreasing and
Φ(0) = 0 then

n∑
j=1

Φ(Aj)xj ≥ Φ(b)

is a valid inequality for S = Zn ∩ {x ∈ Rn+ : Ax ≥ b} for any (A, b).

Proof. We have to show the three following inequalities for all x ∈ S to
prove that the inequality in the proposition is valid for S:

1.
n∑
j=1

Φ(Aj)xj ≥
n∑
j=1

Φ(Ajxj)

2.
n∑
j=1

Φ(Ajxj) ≥ Φ(Ax)

3. Φ(Ax) ≥ Φ(b)

Let us prove the different points using the hypotheses:

1. It suffices to show that Φ(Aj)xj ≥ Φ(Ajxj) for all j. We will prove
it by induction. If xj = 0, then Φ(Aj)xj = 0 = Φ(0) = Φ(Ajxj). If
xj = 1, then Φ(Aj)xj = Φ(Aj) = Φ(Ajxj). Suppose it is true for
xj = k − 1. Then:

kΦ(Aj) = Φ(Aj) + (k − 1)Φ(Aj)

≥ Φ(Aj) + Φ((k − 1)Aj) by induction hypothesis

≥ Φ(Aj + (k − 1)Aj) by subadditivity of the function

= Φ(kAj)

2. We have the following:

n∑
j=1

Φ(Ajxj) = (Φ(A1x1) + Φ(A2x2)) +

n∑
j=3

Φ(Ajxj)

≥ (Φ(A1x1 +A2x2)) +

n∑
j=3

Φ(Ajxj) by subadditivity of the function

≥ · · · ≥ Φ(Ax)

3. Since Ax ≥ b for all x ∈ S and Φ non-decreasing, the inequality holds.
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Proposition 7.3. If Φ : Rm → R is superadditive, non-decreasing and
Φ(0) = 0 then

n∑
j=1

Φ(Aj)xj ≤ Φ(b)

is a valid inequality for S = Zn ∩ {x ∈ Rn+ : Ax ≤ b} for any (A, b).

Proof. Similar to the proof of the previous proposition.

To illustrate this proposition, let consider the following system of inequalities

x1 + x2 ≤ 1

x2 + x3 ≤ 1

x1 + x3 ≤ 1

and suppose we can write it as {x ∈ R3
+ : Ax ≤ b}.

Then,

x1 + x2 + x3 ≤ 1

is a valid inequality for S = Z3 ∩ {x ∈ R3
+ : Ax ≤ b}.

Indeed, if we consider the function Φ : R3 → R such that Φ(x1, x2, x3) =
b1

2(x1+x2+x3)c, we can easily check that it is superadditive, non-decreasing
and Φ(0) = 0. From the proposition,

3∑
j=1

Φ(Aj)xj ≤ Φ(b)

that can be written as

b1c · x1 + b1c · x2 + b1c · x3 ≤ b3
2c

is a valid inequality for S = Z3 ∩ {x ∈ R3
+ : Ax ≤ b}, hence the result.
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7.1.4 Reformulation-Linearization Technique (RLT)

The RLT is designed for 0-1 linear programs. Consider the 0-1 IP feaible
region: P ∩ {0, 1}n. Note that the condition xi ∈ {0, 1} may be re-written
as

x2
i = xi.

The steps are the following:

1. Reformulation step: Multiply x1 ≥ 0 and 1−x1 ≥ 0 to the constraints
Ax ≤ b:

n∑
j=1

Aijx1xj ≤ bix1,
n∑
j=1

Aijxj −
n∑
j=1

Aijx1xj ≤ bi − bix1 ∀i ∈ [m]

2. Linearization step: In the above system, replace x2
1 by x1 and replace

x1xj by y1j for j 6= 1, thus obtaining the linear system:

Ai1x1 +
∑n

j=2Aijy1j ≤ bix1,∑n
j=1Aijxj −Ai1x1 −

∑n
j=2Aijy1j ≤ bi − bix1

∀i ∈ [m]

3. Projection: Finally, we project the above polytope in the space of x
and y variables to the spae of x variables. Let us call the resulting
polytope Q1. It is easily seen that

P ⊇ Q1 ⊇ P I .

4. Repeat recursively: If we take Q1 and then apply the above process
now with x2 and 1 − x2. Let us call this polytope Q2. We can then
again repeat the same procedure with x3 and so forth. Then it can be
shown that:

P ⊇ Q1 ⊇ Q2 ⊇ Q3 ⊇ Q4 · · · ⊇ Qn = P I .

7.2 Some Classical results on CG Cutting Planes

In this section we present some results on the CG cuts. These classical
results are representative of the results that have also been obtained (to
various degrees) for other classes of cuts discussed in the previous section.
For simiplicity, we repeat the definition of CG closure.
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Definition 7.7 (CG Closure). Let P ⊂ Rn be a rational polyhedron. Its
Chvatal-Gomory (CG) closure P (1) is defined as

P (1) =
⋂
α∈Zn

σP (α)<∞

{x ∈ Rn|α>x ≤ bσP (α)c} (7.1)

Inductively, define the kth CG closure P k(k ≥ 2) as

P (k) =
⋂
α∈Zn

σ
(k−1)
P (α)<∞

{x ∈ Rn|α>x ≤ bσ(k−1)
P (α)c} (7.2)

Enevn though the CG closure P (1) is defined by an infinite number of
hyper planes, it is surprisingly a polyhedron.

Theorem 7.2 (Schrijver 1980). Let P be a rational polyhedron, then P 1 is
also a rational polyhedron.

Proof. W.l.o.g, assume P is non empty and P = {x|Ax ≤ b} where A and
b are integral. Any CG cut should be in the form y>Ax ≤ by>bc, where
y ∈ Qm and y>A ∈ Zn.

We claim there exists w ∈ Qm such that 0 ≤ wi < 1 and the CG cut
y>Ax ≤ by>bc is implied by the CG cut w>Ax ≤ bw>bc. Indeed, define
w = y − byc, where b.c is taken component wise. Then, 0 ≤ wi < 1. Since,
w>A = y>A− byc>A and the two terms in RHS are both integral, w>A is
integral. Since byc>b is integral, bw>bc+ byc>b = bw>b+ byc>bc = by>bc.
Now taking the combination of the two inequalities w>A ≤ bw>bc and
byc>Ax ≤ byc>b, we get y>Ax ≤ by>bc. Thus, w>A ≤ bw>bc implies the
cut y>Ax ≤ by>bc.

Let S = {α | ∃w, s.t.w>A = α ∈ Zm, 0 ≤ wi < 1∀i} is therefore the set
of interesting left-hand-sides for enerating CG cuts. The set of feasible α’s
in S is finite which proves the result.

Theorem 7.3. Let P be a rational polyhedron. Then there exists a finite k
such that P k = PI .

In order to prove we will need a number of preliminary results in order
to prove Theorem 7.3.

Lemma 7.1. Let P ⊆ Rn be a rational polyhedron. Let F be a face of P,
then F (1) = P (1) ∩ F .

Proof. Since any CG cut of P is a CG cut of F, we have F (1) ⊆ P (1).
Therefore, F 1 ⊆ P 1 ∩F . To show the other direction we first make a claim.
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Claim : If c>x ≤ bδc is a CG cut for F, then there exists c∗ ∈ Zn and δ∗ ∈
R such that (c∗)>x ≤ bδ∗c is a CG cut for P and the set {x | (c∗)>x ≤ bδ∗c}∩
F ⊂ {x | c>x ≤ bδc} ∩ F}. Indeed w.l.o.g, we set F = {x |A1x = b1, A2x ≤
b2} and P = {x|A1x ≤ b1, A2x ≤ b2}. Since c>x ≤ δ is a supporting
hyperplane of F, there exists y1 (not necessarily non-negative) and y2 ≥ 0
such that c = y>1 A

1 + y>2 A
2 and δ = y>1 b

1 + y>2 b
2. Define (c∗)> = (y1 −

by1c)>A1 +y>2 A
2, δ∗ = (y1−by1c)>b1 +y>2 b

2. By integrality of by1c>b,bδ∗c+
by1cT b = bδ∗ + by1cT bc = bδc. Aggregating two valid inequalities (c∗)> ≤
bδ∗c and by1c>A1x = by1c>b1 (an equality valid for F ), we get c>x ≤ bδc.
This proves the claim.

As a consequence of the above claim and Theorem 7.2, observe that:

F 1 =
⋂

i∈finite set

{x | (ci)>x ≤ bδic} = F
⋂

i∈finite set

{x | (ci)>x ≤ bδic}

⊇
⋂

i∈finite set

{x | (ci∗)Tx ≤ bδi∗c}

⊇ F ∩ P 1,

where (ci∗)>x ≤ bδi∗c is the CG cut of P that corresponds to CG cut
(ci)>x ≤ bδic of F as in the claim above. Thus we complete the proof.

We obtain the following Corollary of the above Lemma.

Corollary 7.1. Let P ⊂ Rn be a rational polyhedron. Let F be a face of P
and let k be natural number, then F (k) = P (k) ∩ F .

Lemma 7.2. Let P ⊆ Rn be a rational polyhedron. There exist rational
matrix G and rational vector f s.t.

• P I = {x |Gx ≤ f}

• max{gTi x |x ∈ P} <∞ where gi is a row of G

Proof. We will consider two cases:

• Case 1: P I 6= φ
Then by the fundamental theorem of IP we have that

Pi = {x | Ĝx ≤ f̂} (7.3)

We claim that Ĝ satisfies max {ḡTi x |x ∈ P}. Assume contradiction
max{ḡTi x|x ∈ P} = ∞ =⇒ ∃v ∈ vec.cone(P ), s.t. ḡT v > 0. By the
fundamental theorem of integer programming, v ∈ rec.cone(P I) =⇒
ḡTi x ≤ fi cannot be a valid inequality for P I .
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• Case 2: P I = φ
We claim that dim(rec.cone(P )) ≤ n − 1. Assume by contradiction
dim(rec.cone(P )) = n. Let y1 . . . yn be integral linearly independent
vectors in (rec.cone(P )). Let u ∈ Zn. We can say that there exist
λi s.t. z +

∑
i
λiy

i = u. Consider z +
∑
i

(λi − bλic)yi ∈ P ∩ Zn =⇒

P ∩ Zn 6= φ which is a contradiction. From the claim above ∃g ∈ Qn
s.t. gTx = 0∀x ∈ rec.cone(P ), which implies

max{gTx|x ∈ P} <∞ (7.4)

max{−gTx|x ∈ P} <∞ (7.5)

Define P I = {x|gTx ≤ −1, gTx ≥ 1}

The next result is related to the so-called Hermite normal form of a
rational matrix. We will skip the proof of this result.

Lemma 7.3. Let A be a full rank rational matrix. Then there exists a square
invertible unimodular matrix U s.t. AU = [B 0], where B is invertible.

Lemma 7.4. Let P = {x |Ax ≤ b} be a rational polyhedron. Let Q =
{x |AUx ≤ b} where U is a unimodular matrix. Then P 1 = {Ax ≤ b, CAx ≤
bCbc} ⇔ Q1 = {AUx ≤ b, CAUx ≤ bCbc}. Moreover P k = P I ⇔ Qk = QI

Proof. Since the inverse of a unimodular matrix is also a unimodular matrix,
we only need to prove one direction. Clearly, Q1 ⊆ {x|AUx ≤ b, CAUx ≤
bCbc}. We need to prove that Q1 ⊇ {AUx ≤ b, CAUx ≤ bCbc} = W .
Assume by contradiction Q1 (W . Suppose the CG cut is (λ)TAUx ≤ bλT bc
where λTAU ∈ Zn. Then observe that we have

max{λTAUx|x ∈W} > bλT bc (7.6)

By Farkas’ lemma applied to W we have:

αTAU +BTCAU = λTAU (7.7)

αT b+BT bCbc > bλT bc (7.8)

However this implies that P 1 6= {Ax ≤ b, CAx ≤ bCbc} a contradiction. By
induction on Part 1 we know P k = {x|Ãx ≤ b̃} ⇔ Qk = {x|ÃUx ≤ b̃}.

To prove the second part we need to show that {x|Ãx ≤ b̃} is integral
⇔ {y|ÃUy ≤ b̃} is integral. Let F be a minimal face of P k and F =
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{x| ¯Ax = b̄}. The corresponding minimal face in Q is {x|ĀUx = b̄}. Suppose
x̂ ∈ Zn and Āx̂ = b̄. We know that U−1x̂ ∈ Zn and therefore we can say that
ĀU(U−1x̂) = b̄. This means that if a minimal face of P k contains an integer
point, then an integer point is contained in the corresponding minimal face
of Qk as well. Since Q is obtained by a unimodular transformation of P , we
can use the same technique to prove the converse.

Finally, we are ready to prove Theorem 7.3.

Proof. of Theorem 7.3 The proof is based on induction of the dimension of
the polyhedron P . Let P ⊆ Rn and dim(P ) = d.

Base case: When d = 0, P is a point in Rn. If P is an integral point,
then P = P I ; If P is not integral, assume xPi /∈ Z, where xPi is a component
of P . In this case, xi ≤ xPi is a valid inequality for P, and the corresponding
CG cut is xi ≤ bxPi c, thus P (1) = ∅ = P I . Therefore, the theorem holds
when d = 0.

Inductive step: Suppose the theorem holds for all rational polyhedra
with dimension 1, 2, . . . , d− 1. Consider the following two cases:

• aff(P ) ∩ Zn = ∅. The affine hull of P can be written as aff(P ) =
{x |Cx = d}. Integer Farkas Lemma (Theorem 5.4) tells that there
exists y ∈ Qm×1 such that yTC ∈ Z1×n, yTd /∈ Z. Since yTCx ≤ yTd
is a valid inequality for P, yTCx ≤ byTdc is a CG cut. Denote it as
(1); notice that yTCx ≥ yTd is also valid for P, thus yTCx ≥ dyTde is
also a CG cut. Denote it as (2). Combine (1) and (2) and it can be
seen that P (1) = ∅. Therefore, the theorem holds.

• aff(P ) ∩ Zn 6= ∅. Let z ∈ aff(P ) ∩ Zn and consider the following
polyhedron:

Q = {u |u = v − z, v ∈ P}.

It is sufficient to prove the theorem for Q (proof similar to that of
Lemma 7.4). Let Q = {x : Ax ≤ b}, and we may assume that the
affine hull of Q is a linear subspace, i.e.,

aff(Q) = {x : Cx = 0}
By Lemma 7.3, there exists an unimodular matrix U such that CU =[
B 0

]
. Consider the following polyhedron

T = {x : AUx ≤ b}
By Lemma 7.4, it is sufficient to prove the theorem for T . In addition,

aff(T ) = {x : CUx = 0} = {x : Bx1 + 0x2 = 0}
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Since B is nonsingular, x1 = 0. Therefore, we may assume T ⊆ Rd
and is full-dimensional. By Lemma 7.2, let T I = {x : Gx ≤ f}, then
max {g>1 x : x ∈ T} = w < ∞. Since T I has a finite number of facet-
defining inequalities, it is sufficient to prove that there exists k < ∞
such that gT1 x ≤ f1 is a valid inequality for T k.

Assume by contradiction, the statement above does not hold. Then
there exists f1 < l ≤ w and integer r such that g>1 x ≤ l is a valid
face-defining inequality for T k, k ≥ r, and g>1 x ≤ l − 1 is not a valid
face-defining inequality for T k, k ≥ r. Define F = T r ∩ {x : gT1 x = l}.
Since F is a proper face of T r, dim(F ) ≤ d − 1 and F ∩ Zn = ∅,
otherwise gT1 x ≤ f1 cannot be a valid inequality for T I .

By induction hypothesis, Fα = F I = ∅. By Corollary 7.1, Fα =
T r+α ∩ F = ∅. This indicates that ∃ε > 0 such that gT1 x ≤ l − ε is a
valid inequality for T r+α. Then gT1 x ≤ l − 1 is a valid inequality for
T r+α+1, which contradicts to the statement that gT1 x ≤ l − 1 is not a
valid face-defining inequality for T k, k ≥ r. This completes the proof.

7.3 Split Cuts for 0-1 IPs

Theorem 7.3 shows that the CG rank is finite for rational polyhedron. It
can be shown that for 0−1 MILPs, the CG rank is atmost O(n2logn) where
there are n binary variables. We show in this split cuts are stronger in the
sense that the split rank for 0− 1 MILPs with n binary variables is at most
n. We first need a preliminary result.

Lemma 7.5. Let S ⊆ Rn and aTx ≤ b be a valid inequality for S, where
a ∈ Rn and b ∈ R. Then conv(S) ∩ H = conv(S ∩ H), where H = {x :
aTx = b}.

Proof. (⊇) Notice that S ∩H ⊆ conv(S) and S ∩H ⊆ H. As conv(S) and
H are convex, we have conv(S ∩H) ⊆ conv(S) ∩H
(⊆) Let x ∈ conv(S)∩H. Then x ∈ H and x =

∑
i∈I λix

i, where
∑

i∈I λi =
1, λi ≥ 0, xi ∈ S,∀i in some index set I. Then

aTx =
∑
i

λia
Txi ≤

∑
i

λib = b

Since x ∈ H, we have aTx = b which implies that aTxi = b for ∀i ∈
I, i.e., xi ∈ H. Therefore, x ∈ conv(S ∩H)



7.4. MIR, GOMORY MIXED INTEGER (GMI) CUT, SPLIT CUTS 139

Theorem 7.4. Let P ⊆ [0, 1]n and (P )i = conv((P ∩ {x|xi ≤ 0}) ∪ (P ∩
{x|xi ≥ 1})). Then

(..(((P )1)2)3..)n = P I = Tn

where Si = P ∩ {x|xj ∈ {0, 1}, ∀j ∈ [i]}, Ti = conv(Si).

Proof. (By induction on n) Base case: (P )1 = T1

Inductive Step: Suppose for k ≥ 2, it holds that (..(((P )1)2)3..)k−1 = Tk−1.
Then

(..(((P )1)2)3..)k = conv[(Tk−1 ∩ {x|xk ≤ 0}) ∪ (Tk−1 ∩ {x|xk ≥ 1})]
= conv[(conv(Sk−1) ∩ {x|xk = 0}) ∪ (conv(Sk−1) ∩ {x|xk = 1})]
= conv[conv(Sk−1 ∩ {x|xk = 0}) ∪ conv(Sk−1 ∩ {x|xk = 1})], by Lemma 1

= conv[(Sk−1 ∩ {x|xk = 0}) ∪ (Sk−1 ∩ {x|xk = 1})]
= conv(Sk)

= Tk

7.4 MIR, Gomory mixed integer (GMI) cut, Split
cuts

Miixed integer rounding (MIR) is a cut for one-row relaxation of mixed
integer sets, GMI cuts is algebraic cut, and Split cuts is a geometric cut. In
this section, we show that these three classical cutting-planes are essentially
the same.

7.4.1 MIR is split cut

We will work with a slightly different way to write the MIR set here. Con-
sider the set:

x+ y ≥ b, x ∈ Z, y ≥ 0. (7.9)

A valid inequality for this set is

x+
1

f
y ≥ dbe, (7.10)

where f = b− bbc.
Note now that this inequality can be obtained by appling a split disjunc-

tion:
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Proposition 7.4. The inequality (7.10) is valid for S≤ := {(x, y) | x+ y ≥
b, y ≥ 0, x ≤ bbc and for S≥ := {(x, y) | x+ y ≥ b, y ≥ 0, x ≥ dbe}.

Proof. • S≤: Observe that:

x+ y ≥ b ×
(

1
f

)
+ −x ≥ −bbc ×

(
1−f
f

)
= x+ 1

f y ≥ dbe.

(7.11)

• S≥: Observe that:

y ≥ 0 ×
(

1
f

)
+ x ≥ dbe ×(1)

= x+ 1
f y ≥ dbe.

(7.12)

Note that the MIR inequality can be applied to the following set:∑
j∈I

ajxj +
∑
j∈C

gjyj ≥ b (7.13)

xj ∈ Z+j ∈ I, yj ≥ 0 ∀y ∈ C. (7.14)

Let fj := aj − bajc for j ∈ I and f = b − bbc. Let I≤ := {j ∈ I | fj ≤ f}
and I≥ := {j ∈ I | fj ≥ f}, let C+ := {j ∈ C | gj ≥ 0} and let C− := {j ∈
C ‖ gg ≤ 0}. Now to use MIR inequality “optimally”, we re-arrange and
relax (7.13) as follows:∑

j∈I≤
bajcxj +

∑
j∈I≥
dajexj


︸ ︷︷ ︸

∈Z

+

∑
j∈I≤

(aj − bajc)xj +
∑
j∈C+

gjyj


︸ ︷︷ ︸

≥0

≥ b

to obtain the inequality:

∑
j∈I≤

(
bajc+

fj
f

)
xj +

∑
j∈I≥
dajexj +

∑
j∈C+

gj
f
yj ≥ dbe. (7.15)
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Indeed, in this case it is easily verifyed that (7.15) can be obtained by appling
the disjunction∑

j∈I≤
bajcxj +

∑
j∈I≥
dajexj

 ≤ bbc∨
∑
j∈I≤
bajcxj +

∑
j∈I≥
dajexj

 ≥ dbe
to the LP relaxation of (7.13).

7.4.2 A GMI cut is a MIR

The Gomory mixed integer cut is a cut of the algebraic type (Section 7.1.3).
It is usually applied to rows of the simplex tableau corresponding to basic
variables that are fractional. In particular, given the set∑

i∈I
ajxj +

∑
j∈C

gjyj = b, xj ∈ Z+ ∀j ∈ I, yj ≥ 0 ∀j ∈ C. (7.16)

The GMI cut is:∑
j∈I,fj≤f

fj
f
xj +

∑
j∈I,fj≥f

1− fj
1− f

xj

+
∑

j∈C,s.t.gj≥0

1

f
gjyj +

∑
j∈C,s.t.gj≤0

−gj
1− f

yj ≥ 1, (7.17)

where fj = aj − bajc.
Proposition 7.5. The GMI cut above (valid for (7.16)) is implied by the
MIR inequality applied to the following relaxation of (7.16):∑

i∈I
ajxj +

∑
j∈C

gjyj ≥ b, xj ∈ Z+ ∀j ∈ I, yj ≥ 0 ∀j ∈ C. (7.18)

Proof. Applying the MIR inequality to (7.18) we obtain∑
j∈I,fj≤f

(
bajc+

fr
f

)
xj +

∑
j∈I,fj≥f

dajexj +
∑

j∈C,s.t.gj≥0

gj
f
yj ≥ dbe. (7.19)

Substracting (7.16) from (7.19) to obtain:∑
j∈I,fj≤f

(
−fj +

fj
f

)
xj +

∑
j∈I,fj≥f

(1− fj)xj

+
∑

j∈C,gj≤0

−gjyj +
∑

j∈C,gj≥0

(
gj
f
− gj

)
yj ≥ 1− f

Diving the above inequality by 1− f yields the GMI cut.
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7.4.3 A split cut is a GMI cut

In this section, we will show that any cut that is obtained as a split cut can
also be obtained as GMI cut. It will be convenent to work with a slightly
different version of GMI cut. In particular, we can re-write GMI cut (7.17)
as: ∑

j∈J

(
bajc+

(fj − f)+

1− f

)
xj +

1

1− f
∑

j∈C,s.t.gj≤0

gjyj ≤ bbc, (7.20)

which is obtained as (7.16) - f×(7.17), where (t)+ = max(t, 0).
Before we prove the main result, we prsent a re-statement of Farkas’

Lemma.

Lemma 7.6. Let Q = {x ∈ R : Ax ≤ b} and Q≤ = {x ∈ P : π>x ≤ π0}. If
Q≤ 6= ∅ and α>x ≤ β is a valid inequality for Q≤, then ∃µ ≥ 0 such that
α>x− µ

(
π>x− π0

)
≤ β is a valid inequality for Q.

Proof. Since α>x ≤ β is a valid inequality for Q≤, then by inhomogeneous
Farkas Lemma, there exists v ∈ Rm+ , µ ∈ R+ such that α = A>v + πµ, β ≥
b>v + π0µ. As v ∈ Rm+ , v>Ax ≤ v>b is a valid equality for Q. Meanwhile,

as A>v = α− πµ, β − π0µ ≥ b>v, we can get (α− πµ)> x ≤ β − π0µ is also
a valid inequality for Q; i.e., α>x − µ

(
π>x− π0

)
≤ β is a valid inequality

for Q.

Theorem 7.5. Let P := {(x, y) ∈ (Rn+×R
p
+) |Ax+Gy ≤ b}. If c>x+d>y ≤

h is a valid split cut for P ∩ (Zn × Rp) obtained using a split disjunction:
π>x ≤ π0∨π>x ≥ π+0+1 and assuming that P π,π0 6= ∅, then c>x+d>y ≤ h
can be obtained as a GMI cut (i.e. we can obtain an implied equation for
P by addition of slack variables, then applying the GMI cut to the implied
equation, which yields c>x+ d>y ≤ h).

Proof. If P = ∅, the statement holds trivially. Thus, we now assume P 6= ∅.
Let’s define P≤ := P ∩ {(x, y) ∈ Rn × Rm : π>x ≤ π0}, P≥ := P ∩ {(x, y) ∈
Rn × Rm : π>x ≥ π0 + 1}. There are three different cases:

1. We first assume that P≥ 6= ∅, P≤ 6= ∅. Since c>x + d>y ≤ h is a
valid inequality for P≤ and also for P≥. By the previous lemma, there
exists α ≥ 0, β ≥ 0 such that c>x + d>y − α

(
π>x− π0

)
≤ h is a

valid inequality for P≤, c>x + d>y + β
(
π>x− π0 − 1

)
≤ h is a valid

inequality for P≥, which can be rewritten as

c>x+ d>y − α
(
π>x− π0

)
+ s1 = h, (7.21)
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c>x+ d>y + β
(
π>x− π0 − 1

)
+ s2 = h, (7.22)

with s1 ≥ 0, s2 ≥ 0. We note that if α = 0 or β = 0. There is nothing
to prove since c>x+ d>y ≤ h is a valid inequality for P .

Now suppose α > 0, β > 0. Let (7.22)− (7.21), which yields

(α+ β)π>x+ s2 − s1 = β + π0 (α+ β)

or equivalently,

π>x+
s2

α+ β
− s1

α+ β
=

β

α+ β
+ π0.

Let f0 = β
α+β and apply GMIC procedure to the above equation (note

that (π, π0) ∈ Zn × Z). Then we arrive at

π>x− 1

1− f0

s1

α+ β
=≤ π0;

i.e.,

π>x− s1

α
≤ π0.

Since s1 = c>x+ d>y − α
(
π>x− π0

)
− h, we can finally get

π>x− 1

α

[
c>x+ d>y − α

(
π>x− π0

)
− h
]
≤ π0,

i.e., c>x+ d>y ≤ h, which is GMIC for P .

2. If P≥ = ∅, which implies P≤ 6= ∅ as P π,π0 6= ∅. As P≤ 6= ∅,
by the previous lemma, there exists α ≥ 0 such that c>x + d>y −
α
(
π>x− π0

)
≤ h is a valid inequality for P≤. Meanwhile, as P≥ = ∅,

maxx∈P
(
π>x− π0 − 1

)
< −δ, 1 > δ > 0. Choose β = 1−δ

δ α ≥ 0.
Then we have

c>x+ d>y + β
(
π>x− π0 − 1

)
= c>x+ d>y +

1− δ
δ

α
(
π>x− π0 − 1

)
= c>x+ d>y + α

[
−
(
π>x− π0

)
+ 1 +

1

δ

(
π>x− π0 − 1

)]
≤ c>x+ d>y − α

(
π>x− π0

)
+

(
1− 1

δ
δ

)
≤ h.

Thus, c>x+ d>y + β
(
π>x− π0 − 1

)
is a valid inequality for P . Now

the same procedure of case (i) follows.
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3. If P≤ = ∅, which implies P≥ 6= ∅. As P≥ 6= ∅, by the previous lemma,
there exists β ≥ 0 such that c>x + d>y + β

(
π>x− π0 − 1

)
≤ h is a

valid inequality for P≥. Meanwhile, as P≤ = ∅, minx∈P
(
π>x− π0

)
>

δ, 1 > δ > 0. Choose α = 1−δ
δ β ≥ 0. Then we have

c>x+ d>y − α
(
π>x− π0

)
= c>x+ d>y − 1− δ

δ
β
(
π>x− π0

)
= c>x+ d>y + β

[(
π>x− π0 − 1

)
+ 1− 1

δ

(
π>x− π0

)]
≤ c>x+ d>y + β

(
π>x− π0 − 1

)
+

(
1− 1

δ
δ

)
≤ h.

Thus, c>x+ d>y − α
(
π>x− π0

)
is a valid inequality for P . Now the

same procedure of case (i) follows.

7.5 Cover Inequality

7.5.1 Knapsack Cover Inequality

Let K = {x ∈ {0, 1}n|
∑n

j=1 ajxj ≤ b} be the feasible set of a Knapsack
problem, where we can assume 0 ≤ aj ≤ b for j = 1, ..., n. Then C ⊆ [n] is
a cover if

∑
j∈C aj > b.

Observation 7.1. If C is a cover, then
∑

j∈C xj ≤ |C| − 1 is a valid in-
equality for conv(K). A cover is minimal if

∑
j∈C/{k} ≤ b for ∀k ∈ C. For

example, let C = {1, 2, 3}, ak = k + 2 for k ∈ C and b = 11. Then C is a
minimal cover.

Definition 7.8 (Cover inequality).
∑

j∈C xj ≤ |C| − 1

Proposition 7.6. If C is a minimal cover, then the cover inequality is
facet-defining for conv(K) ∩ {x|xi = 0,∀i /∈ C}

7.5.2 Flow Cover Inequality

Let S = {(x, y) ∈ {0, 1}n × Rn+|
∑n

j=1 yj ≤ b, yj ≤ ajxj , ∀j ∈ [n]} and let
T = {(x, y) ∈ {0, 1}n × R+|

∑n
j=1 ajxj ≤ b+ y}.

Definition 7.9 (Flow Cover Inequality).
∑

j∈C yj+
∑

j∈C(aj−λ)+(1−xj) ≤
b, where λ =

∑
j∈C aj − b
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Proposition 7.7. Let C be a cover and λ =
∑

j∈C aj − b. Then the in-
equality ∑

j∈C
min{aj , λ}xj ≤

∑
j∈C

min{aj , λ} − λ+ y

is a valid inequality for conv(T ).

Proof. Let C1 = {j|aj ≤ λ}, C2 = {j|aj > λ}, and (x, y) ∈ T .

• Case I: xj = 0 for some j ∈ C2

Then

LHS =
∑
j∈C1

ajxj +
∑
j∈C2

λxj

≤
∑
j∈C1

aj + λ(|C2| − 1)

≤
∑
j∈C1

aj + λ|C2| − λ+ y.

• Case 2: xj = 1 for all j ∈ C2.

Let C1+ = {j|xj = 1} and C1− = {xj |xj = 0}. Then

LHS =
∑
j∈C1

ajxj +
∑
j∈C2

λxj

=
∑
j∈C1+

aj + λ|C2|

=
∑
j∈C1

aj −
∑
j∈C1−

aj + λ|C2|

≤
∑
j∈C1

aj + y − λ+ λ|C2|,

where the last inequality follows from the definition of λ and T :∑
j∈C

ajxj ≤ b+ y

=⇒
∑
j∈C

aj −
∑
j∈C1−

aj ≤ b+ y, by definition of C1−

=⇒ λ−
∑
j∈C1−

aj ≤ y

=⇒ −
∑
j∈C1−

aj ≤ y − λ
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Observation 7.2. We applied the disjunction
∑

j∈C2 xj ≤ |C2| − 1 and∑
j∈C2 xj ≥ |C2|.

We want to show that the following flow cover inequality∑
j∈C

yj +
∑
j∈C

(aj − λ)+ · (1− xj) ≤ b. (7.23)

is a valid inequality for conv(S).

Proposition 7.8. Inequality (7.23) is a v.i. for the convex hull of S.

Proof. Let us re-write the constraints yj ≤ ajxj , ∀j ∈ [n] into

yj + tj = ajxj , tj ≥ 0 ∀j ∈ [n], . (7.24)

Combining with the constraints
∑

j∈C yj ≤ b, we have∑
j∈C

ajxj −
∑
j∈C

tj ≤ b

⇒ ∑
j∈C

ajxj ≤ b+
∑
j∈C

tj .

By Proposition 7.7 in previous lecture, we have∑
j∈C

min{aj , λ} · xj ≤
∑
j∈C

min{aj , λ} − λ+
∑
j∈C

tj

⇒∑
j∈C

min{aj , λ} · xj ≤
∑
j∈C

min{aj , λ} −
∑
j∈C

aj + b+
∑
j∈C

ajxj −
∑
j∈C

yj

⇒ ∑
j∈C

yj +
∑
j∈C

(min{aj , λ} − aj) · xj +
∑
j∈C

(aj −min{aj , λ}) ≤ b

⇒ ∑
j∈C

yj +
∑
j∈C

(aj − λ)+ · (1− xj) ≤ b.
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We do not prove the next result.

Theorem 7.6. Inequality (7.23) is facet-defining for conv(S) if maxj∈C >
λ.

Example: Capacitated Facility Location Problem
Notations:

• yij : quantity from facility j to retailer i.

• xj =

{
1 if facility j is open

0 otherwise.

• uj : capacity of facility j.

• di: demand of retailer i.

Constraints: ∑
j

yij = di, ∀i∑
i

yij ≤ ujxj , ∀j

yij ≥ 0 ∀i, j
xj ∈ {0, 1}

We define zj =
∑

i yij ∀j, and we have

zj ≤ ujxj , ∀j

and ∑
j

zj =
∑
i

di ⇒
∑
j

zj ≤
∑
i

di

Then we can use Proposition 7.8 to generate valid inequalities.

7.6 Lifting

Proposition 7.9. Consider a set S ⊆ {0, 1}n, s.t. S
⋂
{x|xn = 1} 6= ∅.

Suppose
∑n−1

j=1 αjxj ≤ β is valid for S
⋂
{x|xn = 0}. Then

αn = β −max{
n−1∑
j=1

αjxj |x ∈ S, xn = 1}
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is the largest coefficient s.t.
∑n

j=1 αjxj ≤ β is valid for S. Moreover, if∑n−1
j=1 αjxj ≤ β induces a d-dimensional face w.r.t. conv(S)

⋂
{x|xn = 0},

then
∑n

j=1 αjxj ≤ β induces a face of conv(S) whose dimension is at least
d+ 1.

Proof. (i). To prove
∑n

j=1 αjxj ≤ β is a v.i. for S. Let x̂ ∈ S. If x̂n = 0,

then by hypothesis we have
∑n−1

j=1 αj x̂j +αn ·0 ≤ β. If x̂n = 1, by the defini-

tion of αn, we have
∑n−1

j=1 αj x̂j ≤ β−αn. Thus,
∑n

j=1 αj x̂j ≤ β−αn+αn·1 =
β.

(ii). Let x̄ be an optimal solution to the maximization problem

max{
n−1∑
j=1

αjxj |x ∈ S, xn = 1}.

By definition of αn, we know that ∀δ > 0,

n−1∑
j=1

αj x̄j + (αn + δ) · 1 > β.

Hence, the largest coefficient is αn.

(iii). By hypothesis, there exists d+1 affinely independent points in S
⋂
{x|xn =

0} satisfying the inequality
∑n

j=1 αjxj ≤ β at equality. Now let us take the
point (x̄, 1). Clearly, by construction of αn, we have

n−1∑
j=1

αj x̄j + αn · 1 = β.

Furthermore, (x̄, 1) is affinely independent from the previous d + 1 points.
Therefore,

∑n
j=1 αjxj ≤ β induces a face of conv(S) whose dimension is at

least d+ 1.

Example: Consider the following system

8x1 + 7x2 + 6x3 + 4x4 + 6x5 + 6x6 + 6x7 ≤ 22.

xj ∈ {0, 1}, ∀j ∈ {1, 2, ..., 7}

Notice that x1 + x2 + x3 + x4 ≤ 3 (which is a cover) is a v.i. Now let us lift
x5. Notice that the maximization problem

3−max{x1 + x2 + x3 + x4|8x1 + 7x2 + 6x3 + 4x4 ≤ 16} = 1.



7.6. LIFTING 149

Therefore, we can obtained the strengthened (lifted) inequality

x1 + x2 + x3 + x4 + x5 ≤ 3.

Similarly, we can lift x6 by

3−max{x1 + x2 + x3 + x4 + x5|8x1 + 7x2 + 6x3 + 4x4 + 6x5 ≤ 16} = 0.

Notice that now the lifted inequality

x1 + x2 + x3 + x4 + x5 ≤ 3.

is exactly the original one. We call this process “sequential lifting”. Note
that we can lift x7 as well and obtain the inequality

x1 + x2 + x3 + x4 + x5 ≤ 3.

Observations:

(1) Different lifting order may lead to different inequality.

(2) Sequential-lifting preserves the facet-structure of the inequality.

(3) Not all the facet-defining inequalities can be obtained by sequential-
lifting.

The previous lifting-technique is called up-lifting, one can symmetri-
cally construct the corresponding down-lifting technique. In particular,
we have the following proposition.

Proposition 7.10. Consider a set S ⊆ {0, 1}n, s.t. S
⋂
{x|xn = 0} 6=

∅. Suppose
∑n−1

j=1 αjxj ≤ β is valid for S
⋂
{x|xn = 1}. Then

αn = −β + max{
n−1∑
j=1

αjxj|x ∈ S, xn = 0}

is the largest coefficient s.t.
∑n

j=1 αjxj ≤ β + αn is valid for S. More-

over, if
∑n−1

j=1 αjxj ≤ β induces a d-dimensional face w.r.t. conv(S)
⋂
{x|xn =

1}, then
∑n

j=1 αjxj ≤ β + αn induces a face of conv(S) whose dimen-
sion is at least d+ 1.
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A practical problem may arise when using the lifting-technique. That
is, solving an IP to get a cut is too expensive. The following approach is
a possible way out. Let S = {x ∈ {0, 1}n |Ax ≤ b} and

∑
j∈C αjxj ≤ β

be a valid inequality for S
⋂
{x|xj = 0, ∀j ∈ [n] \ C}. Then consider

the problem

f(z) : = min{β −
∑
j∈C

αjxj}

s.t.
∑
j∈C

Ajxj ≤ b− z.

xj ∈ {0, 1},∀j ∈ C.

Theorem 7.7. Let g : Rm 7→ R be a function that satisfies the following

1. g is superadditive, i.e., g(u + v) ≥ g(u) + g(v) for all u, v and
g(0) = 0;

2. g(x) ≤ f(x) for all x.

Then ∑
j∈C

αjxj +
∑

j∈[n]\C

g(Aj)xj ≤ β

is a valid inequality for conv(S).

We further introduce some notation. For simplicity we denote g(Aj)
also by αj for j ∈ [n]\C. Fix any arbitrary sequence of indices in [n]\C,
say j1, . . . , jn−|C|. For i = 0, . . . , n−|C|, we define Ci = C∪{j1, . . . , ji}
with C0 = C. Further, let

[Πi] fi(z) = min β −
∑
j∈Ci−1

αjxj

s.t.
∑
j∈Ci−1

Ajxj ≤ b− z

xj ∈ {0, 1} ∀j ∈ Ci−1.

We first prove the following lemma.

Lemma 7.7. For all i = 1, . . . , |[n] \ C|, g(z) ≤ fi(z).
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Proof. We prove this by induction. When i = 1, f1 = f , the result
follows from the definition of g. Suppose the result is true for 1 ≤ k ≤
i− 1 with some 2 ≤ i ≤ n− |C| − 1. Let x∗ be the optimal solution to
[Πi], and u = Aji−1x∗ji−1

. Thus we have

fi(z) = β −
∑
j∈Ci−2

αjx
∗
j − αji−1

x∗ji−1

= fi−1(z + u)− g(Aji−1)x∗ji−1
(by optimality of x∗)

≥ g(z + u)− g(Aji−1)x∗ji−1
(by induction hypothesis)

= g(z + u)− g(Aji−1x∗ji−1
) (since x∗ji01

are either 0 or 1)

= g(z + u)− g(u) ≥ g(z). (by superadditivity of g)

With this lemma, it is easy to prove Theorem 7.7.

Proof of Theorem 7.7. The idea is to lift variables xj1 , . . . , xjn−|C| se-

quentially, but instead of using the largest possible coefficient fi(A
ji),

we use g(Aji), which yields a weaker valid inequality. We explain
the process for i = 1, the rest follows the same routine. Suppose we
lift variable xj1 and obtain is largest possible coefficient f1(Aj1), thus∑

j∈C αjxj +f1(Aj1)xj1 ≤ β is a valid inequality for conv(S)∩{x |xj =

0 ∀j ∈ [n] \ C1}. By Lemma 7.7, we know f1(Aj1) ≥ g(Aj1), thus∑
j∈C αjxj + g(Aj1)xj1 ≤ β is still a valid inequality for conv(S) ∩

{x |xj = 0 ∀j ∈ [n] \ C1}. We continue to lift variable xj2 and apply
the same substitution. Finally after lifting all x variables, we obtain
the desired valid inequality.

Notice that Theorem 7.7 provides a more computationally efficient
way to lift variables and generate valid inequalities, compared to solving
problems like [Πi] to obtain the largest possible coefficients.

7.7 Suggested exercises

1. Construct an example of a polytope in R2 whose CG rank is great
than 1.

2. Construct an example of a polytope in R2 whose split rank is
great than 1.
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3. Let P ⊆ Rn be a rational polyhedron. For π ∈ Zn and π0 ∈ Z,
let P π,π0 := conv{(P ∩ {x |π>x ≤ π0}) ∪ (P ∩ {x |πx ≥ π0 + 1}).
Recall that ∩π∈Zn,π0∈ZP

π,π0 is the split closure of P .

(a) For a fixed π ∈ Zn, let P π = ∩π0∈ZP
π,π0 . Prove that P π =

{x |x ∈ P, πTx ∈ Z}.
(b) Let A be a matrix with the following property: removing

any one column from A makes the resulting matrix totally
unimodular and let b be an integral vector. Prove that the
split closure of {x ∈ Rn |Ax ≤ b} yields it integer hull (i.e.
convex hull of integer feasible solutions)

4. Let A be a m × n rational matrix. Let c be a n dimensional
rational vector. Consider the following function f :

f(u) = max cTx

s.t. x ∈ Su,
where Su := {x ∈ Zn |Ax ≤ u} and f is defined over the set
S ⊆ Rm where S = {u ∈ Rm |Su 6= ∅}. 1 Prove the following:

(a) f(0) = 0 if and only if f(u) is bounded for all u ∈ S.

(b) f is non-decreasing, i.e., if u1 ≥ u2 componentwise, then
f(u1) ≥ f(u2).

(c) f is superadditive, i.e., f(u1) + f(u2) ≤ f(u1 + u2).

(d) Assume f(0) = 0. Show that there exists g : Rm → R such
that

i. g(u) is finite valued for u ∈ Rm,

ii. g(u) = f(u) ∀u ∈ S,

iii. g is non-decreasing,

iv. g is superadditive.

(e) Let F be the set of all real-valued functions h on Rm that
satisfy h(0) = 0, h is superadditive and h is non-decreasing
function. Let

ρ = min h(b) (7.25)

s.t. h(Aj) = cj ∀j ∈ {1, . . . , n} (7.26)

h(−Aj) = −cj ∀j ∈ {1, . . . , n} (7.27)

h ∈ F , (7.28)
1The function f is often called as value function of an IP.
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where Aj is the jth column of A and cj is the jth component
of c. Prove that following duality results:

i. Weak Duality: cTx ≤ h(b) for any x ∈ Sb and any func-
tion h satisfying (7.26) - (7.28).

ii. Strong Duality: If b ∈ S and f(b) is finite, then ρ = f(b).
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Chapter 8

Branch and Bound, Presolve,
Primal Heuristics

8.1 Branch and Bound Algorithm

Please refer to the textbook for the detail description of Branch and
Bound Algorithm. Here we discuss some flexibilities that we can control
in B&B.

8.1.1 Variable Selection

Suppose we have chosen an active node i. Associated with it is the
linear programming solution xi. Next we must choose a variable to
define the division. We restrict it to the index set N i = {j ∈ N |xij /∈
Z}. Empirical evidence shows that the choice of a j ∈ N i can be
very important to the running time of the algorithm. Among different
variable selection rules, we discuss the following.

1. Strong Branching. Strong branching chooses as the branch-
ing variable the variable such that it maximizes the estimated
improvement in the objective value. It first generates a list of
candidates, then branches on each candidate and records the im-
provement in the objective value. The candidate with the largest
improvement is chosen as the branching variable. Strong branch-
ing can be effective for combinatorial problems, but it is usually
computationally expensive.
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2. Pseudo-Cost Approach. This method chooses as the branch-
ing variable the variable such that it maximizes the weighted up
and down pseudocosts. Pseudocost branching attempts to branch
on significant variables first, quickly improving lower bounds.
Pseudocost branching estimates significance based on historical
information; however, this approach might not be accurate for
future search.

3. Priority. If we have specific knowledge of the problem, we can
use it to determine which variable to branch on. We can branch on
the important variables first, e.g., first decide which warehouses
to open, then decide the vehicle routing; branch on earlier (time-
based) decisions first, etc. There are mechanisms for giving the
variables a priority order, so that if two variables are fractional,
the one with the high priority is branched on first.

4. Generalized Upper Bound (GUB) Constraints. Many inte-
ger programs with binary variables have generalized upper bound
constraints of the form ∑

j∈J

xj = 1,

where J is some index subset with very large cardinality. In-
stead dividing the feasible region based on the value of a specific
variable, which may lead to an unbalanced tree, it is commonly
more desirable to divide the feasible region of the parent roughly
equally between the children. In particular, we consider the fol-
lowing branching rule:∑

j∈J1

xj = 0 or
∑
j∈J2

xj = 0,

where J1, J2 is a partition of J . Note that it seems reasonable to
have J1 and J2 of nearly equal cardinalities.

8.1.2 Node Selection

Given a list of active subproblems, or equivalently, a partial tree of
active nodes, the question is to decide which node should be examined
in detail next. Here are two basic options.
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1. Best Upper Bound. This selection rule chooses the node with
the smallest (or largest, in the case of a maximization problem)
relaxed objective value. The best upper bound strategy tends
to reduce the number of nodes to be processed and can improve
lower bounds quickly. However, this does not necessarily find
feasible solutions quickly and can result in the solver running out
of memory.

2. Depth-First Search. This rule chooses the node that is deepest
in the search tree. Depth-first search is effective in locating feasi-
ble solutions, since such solutions are usually deep in the search
tree. Compared to the costs of the best upper bound strategy, the
cost of solving LP relaxations is less in the depth-first strategy.
The number of active nodes is generally small, but it is possible
that the depth-first search will remain in a portion of the search
tree with no good integer solutions. This occurrence is computa-
tionally expensive.

8.2 Preprocessing and Probing

Preprocessing of an IP model consists of the tecniques such as

• Detecting redundant constraints

• Variable fixing

• Checking infeasibility

Let Ax+Gy ≤ b, x ∈ {0, 1}n, y ∈ Rp+
Take the l’th row:∑

j∈B+

aljxj −
∑
j∈B−

aljxj +
∑
j∈C+

gljyj −
∑
j∈C−

gljyj ≤ bl

Define P l as

• All constraints except l’th row

• All bounds

• All integrality constraints, non-negativity constraints
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Feasibility check

Now consider the following problem:

min

∑
j∈B+

aljxj −
∑
j∈B−

aljxj +
∑
j∈C+

gljyj −
∑
j∈C−

gljyj

 (8.1)

s.t.(x, y) ∈ P l (8.2)

If z∗ > bl ⇒ infeasible

Suppose zLP ≤ z∗ and zLP > bl = 1 infeasible.

Evaluate

∑
j∈B+

alj0−
∑
j∈B−

alj1 +
∑
j∈C+

gljlj −
∑
j∈C−

gljuj > bl

This detects infeasibility very quickly!

Detecting redundant constraints

Let

max

∑
j∈B+

aljxj −
∑
j∈B−

aljxj +
∑
j∈C+

gljyj −
∑
j∈C−

gljyj

 (8.3)

s.t.(x, y) ∈ P l (8.4)

If z∗ ≤ bl ⇒ inequality redundant

zUB ≥ z∗ and zUB ≤ bl ⇒ inequality redundant

Evaluate
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∑
j∈B+

alj +
∑
j∈C+

gljuj −
∑
j∈C−

gljlj ≤ bl

Variable bound improvement

Let

z∗ = max

∑
j∈B+

aljxj −
∑
j∈B−

aljxj +
∑

j∈C+/{k}

gljyj −
∑
j∈C−

gljyj

 (8.5)

s.t.(x, y) ∈ P l (8.6)

Then

−z∗ + glky
l
k ≤ bl

yk ≤
bl − z∗

glk
< uk. If this holds, it can improve the upper bounds.

Variable Fixing

Similarly,

z∗ = max

∑
j∈B+

aljxj −
∑
j∈B−

aljxj +
∑
j∈C+

gljyj −
∑
j∈C−

gljyj

 (8.7)

s.t.(x, y) ∈ P l (8.8)

xk = 0 (8.9)

z∗ > bl

If zlb ≤ z∗ and z∗ > bl ⇒ fix xk = 1
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Probing

z∗ = max

∑
j∈B+

aljxj −
∑
j∈B−

aljxj +
∑
j∈C+

gljyj −
∑
j∈C−

gljyj

 (8.10)

s.t.(x, y) ∈ P l (8.11)

xk1 = 1, xk2 = 1 (8.12)

zlb ≤ z∗

zlb > bl

Hence, xk1 + xk2 ≤ 1

Conflict Graph

Search for cliques in the conflict graph.
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x1 + x2 + x̄3 + x̄4 ≤ 1 This is a strong inequality.

x1 + x2 − x3 − x4 ≤ −1

These inequalities are called clique inequalities.∑
i∈L

xi +
∑
j∈R

x̄i ≤ 1

If L & R have exactly one variable in common, then we can fix
the variables in L (except common variable) to 0, and fix the variables
(except common variable) in R to 1.

If L and R have more than one variable in common, then the prob-
lem is infeasible.

8.3 Primal Heuristics

Primal Heuristics are methods that look for feasible solutions, with no
guarantees of any kind. In principle, the running time of the heuristics
must be controlled. Primal heuristics are needed to : Prove feasibil-
ity of the model, Speed up search, and for Primal bound needed for
pruning for branch and bound tree. Primal heuristics are quite good in
commercial solvers, often finding optimal solutions (or close to optimal
solutions) very quickly.

Primal heuristics can be broadly classified intwo two categories:

•

•
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